Next thing:
do a zero-mag correction plot, with existing matched data csv file.
expand the query range
Panstarrs column meaning:
MAST PanSTARRS Search Output Columns
Files:
detectibility_visulization: checked lsst cadence, lsst_pointing.html

files:
Check_mysim_result: survey year determination - ids
basic: get orbit and color - df

Observatory code:
argus: U83
LSST: X05
scp:

scp -r /Users/qifengc/Documents/2_Research.nosync/sorcha_sim_argus/my_sim/neo_orbit.csv [email protected]:/hpc/group/cosmology/qc59/argus

Submitted job 36510511 for range 3000-3999

Submitted job 36510512 for range 4000-4999

Submitted job 36510513 for range 5000-5999

Submitted job 36510562 for range 6000-6999

11-04

sent Maryann files to do orbit fitting (r>150 object, selected to cover a range of number of detections per object)
zz_Attachment folder/Pasted image 20251104120329.png

10-29

LSST pointing with argus cadence alwasys has this error:

It should be the error of LSST has more color than my current "make_argus_pointing", I can either revise the color input for lsst.int.
zz_Attachment folder/Pasted image 20251030012050.png

Revised the ini file to have only r band, and resubmit the job to check:

(base) qc59@dcc-login-02  **/work/qc59 $** vim sorcha_config_sband_lsst_st3.ini

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=0-1 multi_sorcha_lsst_custom_p_st4.sh 96 16

Submitted batch job 38917306

found an error in previous st3 of lsst (turning on fading function):

It seems to not turned on fading function in the init file:

New st3

(base) qc59@dcc-login-02  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_st3.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_st3_2 --ew impactor_run_0_134999_st3_complete_2

Submitted batch job

run failed:

Resubmit

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch sorcha_run.sh  -c sorcha_config_st3.ini    -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_st3_2 --ew impactor_run_0_134999_st3_complete_2

Submitted batch job 39214146

10-28

running r150 in parallel to double check.

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=0-1 multi_sorcha_argus_r150_st4.sh 96 16

Submitted batch job 38812941

(base) qc59@dcc-login-04  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

          38070609 cosmology      run     qc59  R 14-04:06:56      1 dcc-cosmology-13

        38812941_0 scavenger   sorcha     qc59  R       0:06      1 dcc-fergusonlab-01

        38812941_1 scavenger   sorcha     qc59  R       0:06      1 dcc-fergusonlab-03

"impactor_run_0_134999_10yr_full_output_test.h5" on my local machine is not a full data?

Making LSST position with argus pointing

(base) qc59@dcc-login-01  /work/qc59 $ sbatch make_argus_pointing.sh

Submitted batch job 38818064

using lsst position with argus pointing for sorcha run

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=0-11 multi_sorcha_lsst_custom_p_st4.sh 96 16

Submitted batch job 38828973

10-26

plot is ready to run on full:

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch run_stage_analysis_full.sh 

Submitted batch job 38754444

not full

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch run_stage_analysis.sh

Submitted batch job 38754435

the multiple data reading code is working

(base) qc59@dcc-login-04  **/work/qc59 $** cat logs/st_analysis-38696946.log 

[Fri Oct 24 03:39:01 AM EDT 2025] Host: dcc-tunglab-01

analysis for each sorcha stage

[1,531 objs] warning_time_days valid: 1,531

[All input objects] sizes: 17,517

[Stage 1: vignetting, and mag limit] unique detected objects: 1,531

[Stage 2: +randomization] unique detected objects: 11

[Stage 3: +fading function] unique detected objects: 11

[Stage 4: +linking] unique detected objects: 8

double checked on jupyter notebook and the number matches

Processed chunk 0, total unique so far: 39
Processed chunk 1, total unique so far: 43
Processed chunk 2, total unique so far: 44
Processed chunk 3, total unique so far: 45
Processed chunk 4, total unique so far: 46
Processed chunk 5, total unique so far: 47
Processed chunk 6, total unique so far: 48
Processed chunk 7, total unique so far: 48
Processed chunk 8, total unique so far: 48
Processed chunk 9, total unique so far: 48
Processed chunk 10, total unique so far: 82
Processed chunk 11, total unique so far: 90
Processed chunk 12, total unique so far: 91
Processed chunk 13, total unique so far: 95
Processed chunk 14, total unique so far: 95
Processed chunk 15, total unique so far: 95
Processed chunk 16, total unique so far: 95
Processed chunk 17, total unique so far: 95
Processed chunk 18, total unique so far: 95
Processed chunk 19, total unique so far: 125
Processed chunk 20, total unique so far: 134
Processed chunk 21, total unique so far: 141
Processed chunk 22, total unique so far: 142
Processed chunk 23, total unique so far: 142
Processed chunk 24, total unique so far: 143
Processed chunk 25, total unique so far: 143
Processed chunk 26, total unique so far: 143
Processed chunk 27, total unique so far: 143
Processed chunk 28, total unique so far: 143
Processed chunk 29, total unique so far: 175
Processed chunk 30, total unique so far: 185
Processed chunk 31, total unique so far: 187
Processed chunk 32, total unique so far: 189
Processed chunk 33, total unique so far: 190
Processed chunk 34, total unique so far: 190
Processed chunk 35, total unique so far: 191
Processed chunk 36, total unique so far: 191
Processed chunk 37, total unique so far: 191
Processed chunk 38, total unique so far: 225
Processed chunk 39, total unique so far: 232
Processed chunk 40, total unique so far: 236
Processed chunk 41, total unique so far: 238
Processed chunk 42, total unique so far: 239
Processed chunk 43, total unique so far: 239
Processed chunk 44, total unique so far: 239
Processed chunk 45, total unique so far: 239
Processed chunk 46, total unique so far: 239
Processed chunk 47, total unique so far: 239
Processed chunk 48, total unique so far: 267
Processed chunk 49, total unique so far: 280
Processed chunk 50, total unique so far: 281
Processed chunk 51, total unique so far: 284
Processed chunk 52, total unique so far: 285
Processed chunk 53, total unique so far: 287
Processed chunk 54, total unique so far: 287
Processed chunk 55, total unique so far: 287
Processed chunk 56, total unique so far: 287
Processed chunk 57, total unique so far: 287
Processed chunk 58, total unique so far: 316
Processed chunk 59, total unique so far: 325
Processed chunk 60, total unique so far: 329
Processed chunk 61, total unique so far: 332
Processed chunk 62, total unique so far: 332
Processed chunk 63, total unique so far: 332
Processed chunk 64, total unique so far: 333
Processed chunk 65, total unique so far: 333
Processed chunk 66, total unique so far: 333
Processed chunk 67, total unique so far: 334
Processed chunk 68, total unique so far: 361
Processed chunk 69, total unique so far: 373
Processed chunk 70, total unique so far: 377
Processed chunk 71, total unique so far: 379
Processed chunk 72, total unique so far: 380
Processed chunk 73, total unique so far: 380
Processed chunk 74, total unique so far: 381
Processed chunk 75, total unique so far: 382
Processed chunk 76, total unique so far: 382
Processed chunk 77, total unique so far: 382
Processed chunk 78, total unique so far: 421
Processed chunk 79, total unique so far: 427
Processed chunk 80, total unique so far: 428
Processed chunk 81, total unique so far: 428
Processed chunk 82, total unique so far: 428
Processed chunk 83, total unique so far: 428
Processed chunk 84, total unique so far: 429
Processed chunk 85, total unique so far: 429
Processed chunk 86, total unique so far: 429
Processed chunk 87, total unique so far: 429
Processed chunk 88, total unique so far: 429
Processed chunk 89, total unique so far: 429
Processed chunk 90, total unique so far: 462
Processed chunk 91, total unique so far: 470
Processed chunk 92, total unique so far: 472
Processed chunk 93, total unique so far: 473
Processed chunk 94, total unique so far: 475
Processed chunk 95, total unique so far: 475
Processed chunk 96, total unique so far: 475
Processed chunk 97, total unique so far: 477
Processed chunk 98, total unique so far: 477
Processed chunk 99, total unique so far: 477
Processed chunk 100, total unique so far: 511
Processed chunk 101, total unique so far: 522
Processed chunk 102, total unique so far: 524
Processed chunk 103, total unique so far: 525
Processed chunk 104, total unique so far: 525
Processed chunk 105, total unique so far: 525
Processed chunk 106, total unique so far: 525
Processed chunk 107, total unique so far: 525
Processed chunk 108, total unique so far: 525
Processed chunk 109, total unique so far: 525
Processed chunk 110, total unique so far: 556
Processed chunk 111, total unique so far: 565
Processed chunk 112, total unique so far: 569
Processed chunk 113, total unique so far: 571
Processed chunk 114, total unique so far: 572
Processed chunk 115, total unique so far: 572
Processed chunk 116, total unique so far: 572
Processed chunk 117, total unique so far: 572
Processed chunk 118, total unique so far: 572
Processed chunk 119, total unique so far: 572
Processed chunk 120, total unique so far: 573
Processed chunk 121, total unique so far: 608
Processed chunk 122, total unique so far: 612
Processed chunk 123, total unique so far: 615
Processed chunk 124, total unique so far: 618
Processed chunk 125, total unique so far: 619
Processed chunk 126, total unique so far: 619
Processed chunk 127, total unique so far: 620
Processed chunk 128, total unique so far: 620
Processed chunk 129, total unique so far: 620
Processed chunk 130, total unique so far: 621
Processed chunk 131, total unique so far: 658
Processed chunk 132, total unique so far: 663
Processed chunk 133, total unique so far: 666
Processed chunk 134, total unique so far: 668
Processed chunk 135, total unique so far: 668
Processed chunk 136, total unique so far: 668
Processed chunk 137, total unique so far: 669
Processed chunk 138, total unique so far: 669
Processed chunk 139, total unique so far: 669
Processed chunk 140, total unique so far: 669
Processed chunk 141, total unique so far: 669
Processed chunk 142, total unique so far: 698
Processed chunk 143, total unique so far: 710
Processed chunk 144, total unique so far: 712
Processed chunk 145, total unique so far: 713
Processed chunk 146, total unique so far: 714
Processed chunk 147, total unique so far: 716
Processed chunk 148, total unique so far: 716
Processed chunk 149, total unique so far: 716
Processed chunk 150, total unique so far: 716
Processed chunk 151, total unique so far: 716
Processed chunk 152, total unique so far: 739
Processed chunk 153, total unique so far: 756
Processed chunk 154, total unique so far: 759
Processed chunk 155, total unique so far: 762
Processed chunk 156, total unique so far: 764
Processed chunk 157, total unique so far: 764
Processed chunk 158, total unique so far: 764
Processed chunk 159, total unique so far: 764
Processed chunk 160, total unique so far: 775
Processed chunk 161, total unique so far: 799
Processed chunk 162, total unique so far: 806
Processed chunk 163, total unique so far: 808
Processed chunk 164, total unique so far: 810
Processed chunk 165, total unique so far: 811
Processed chunk 166, total unique so far: 811
Processed chunk 167, total unique so far: 812
Processed chunk 168, total unique so far: 812
Processed chunk 169, total unique so far: 812
Processed chunk 170, total unique so far: 812
Processed chunk 171, total unique so far: 845
Processed chunk 172, total unique so far: 853
Processed chunk 173, total unique so far: 857
Processed chunk 174, total unique so far: 859
Processed chunk 175, total unique so far: 859
Processed chunk 176, total unique so far: 859
Processed chunk 177, total unique so far: 860
Processed chunk 178, total unique so far: 860
Processed chunk 179, total unique so far: 860
Processed chunk 180, total unique so far: 860
Processed chunk 181, total unique so far: 890
Processed chunk 182, total unique so far: 897
Processed chunk 183, total unique so far: 901
Processed chunk 184, total unique so far: 904
Processed chunk 185, total unique so far: 905
Processed chunk 186, total unique so far: 907
Processed chunk 187, total unique so far: 907
Processed chunk 188, total unique so far: 908
Processed chunk 189, total unique so far: 908
Processed chunk 190, total unique so far: 921
Processed chunk 191, total unique so far: 945
Processed chunk 192, total unique so far: 951
Processed chunk 193, total unique so far: 951
Processed chunk 194, total unique so far: 952
Processed chunk 195, total unique so far: 952
Processed chunk 196, total unique so far: 955
Processed chunk 197, total unique so far: 956
Processed chunk 198, total unique so far: 956
Processed chunk 199, total unique so far: 986
Processed chunk 200, total unique so far: 996
Processed chunk 201, total unique so far: 999
Processed chunk 202, total unique so far: 1,000
Processed chunk 203, total unique so far: 1,001
Processed chunk 204, total unique so far: 1,001
Processed chunk 205, total unique so far: 1,003
Processed chunk 206, total unique so far: 1,004
Processed chunk 207, total unique so far: 1,004
Processed chunk 208, total unique so far: 1,004
Processed chunk 209, total unique so far: 1,004
Processed chunk 210, total unique so far: 1,030
Processed chunk 211, total unique so far: 1,044
Processed chunk 212, total unique so far: 1,048
Processed chunk 213, total unique so far: 1,051
Processed chunk 214, total unique so far: 1,051
Processed chunk 215, total unique so far: 1,052
Processed chunk 216, total unique so far: 1,052
Processed chunk 217, total unique so far: 1,052
Processed chunk 218, total unique so far: 1,052
Processed chunk 219, total unique so far: 1,052
Processed chunk 220, total unique so far: 1,060
Processed chunk 221, total unique so far: 1,088
Processed chunk 222, total unique so far: 1,094
Processed chunk 223, total unique so far: 1,096
Processed chunk 224, total unique so far: 1,098
Processed chunk 225, total unique so far: 1,098
Processed chunk 226, total unique so far: 1,099
Processed chunk 227, total unique so far: 1,100
Processed chunk 228, total unique so far: 1,100
Processed chunk 229, total unique so far: 1,100
Processed chunk 230, total unique so far: 1,138
Processed chunk 231, total unique so far: 1,145
Processed chunk 232, total unique so far: 1,147
Processed chunk 233, total unique so far: 1,147
Processed chunk 234, total unique so far: 1,147
Processed chunk 235, total unique so far: 1,148
Processed chunk 236, total unique so far: 1,148
Processed chunk 237, total unique so far: 1,148
Processed chunk 238, total unique so far: 1,148
Processed chunk 239, total unique so far: 1,148
Processed chunk 240, total unique so far: 1,181
Processed chunk 241, total unique so far: 1,187
Processed chunk 242, total unique so far: 1,190
Processed chunk 243, total unique so far: 1,192
Processed chunk 244, total unique so far: 1,193
Processed chunk 245, total unique so far: 1,195
Processed chunk 246, total unique so far: 1,195
Processed chunk 247, total unique so far: 1,196
Processed chunk 248, total unique so far: 1,196
Processed chunk 249, total unique so far: 1,225
Processed chunk 250, total unique so far: 1,237
Processed chunk 251, total unique so far: 1,241
Processed chunk 279, total unique so far: 1,378
Processed chunk 280, total unique so far: 1,382
Processed chunk 281, total unique so far: 1,384
Processed chunk 282, total unique so far: 1,384
Processed chunk 283, total unique so far: 1,385
Processed chunk 284, total unique so far: 1,387
Processed chunk 285, total unique so far: 1,387
Processed chunk 286, total unique so far: 1,387
Processed chunk 287, total unique so far: 1,387
Processed chunk 288, total unique so far: 1,387
Processed chunk 289, total unique so far: 1,421
Processed chunk 290, total unique so far: 1,428
Processed chunk 291, total unique so far: 1,431
Processed chunk 292, total unique so far: 1,432
Processed chunk 293, total unique so far: 1,433
Processed chunk 294, total unique so far: 1,433
Processed chunk 295, total unique so far: 1,433
Processed chunk 296, total unique so far: 1,434
Processed chunk 297, total unique so far: 1,434
Processed chunk 298, total unique so far: 1,434
Processed chunk 299, total unique so far: 1,466
Processed chunk 300, total unique so far: 1,475
Processed chunk 301, total unique so far: 1,480
Processed chunk 302, total unique so far: 1,480
Processed chunk 303, total unique so far: 1,480
Processed chunk 304, total unique so far: 1,483
Processed chunk 305, total unique so far: 1,483
Processed chunk 306, total unique so far: 1,483
Processed chunk 307, total unique so far: 1,483
Processed chunk 308, total unique so far: 1,483
Processed chunk 309, total unique so far: 1,483
Processed chunk 310, total unique so far: 1,522
Processed chunk 311, total unique so far: 1,528
Processed chunk 312, total unique so far: 1,529
Processed chunk 313, total unique so far: 1,529
Processed chunk 314, total unique so far: 1,530
Processed chunk 315, total unique so far: 1,530
Processed chunk 316, total unique so far: 1,530
Processed chunk 317, total unique so far: 1,530
Processed chunk 318, total unique so far: 1,531
Processed chunk 319, total unique so far: 1,531

✅ Total unique ObjID = 1,531

10-21

Test on speed: lsst pointing

(base) qc59@dcc-login-05  /work/qc59 $ sbatch --array=5 multi_sorcha_test_speed.sh 48 32

Submitted batch job 38560288

(base) qc59@dcc-login-05  /work/qc59 $ sbatch --array=5 multi_sorcha_test_speed.sh 192 8

Submitted batch job 38560289

(base) qc59@dcc-login-05  /work/qc59 $ sbatch --array=5 multi_sorcha_test_speed.sh 128 12

Submitted batch job 38560290

(base) qc59@dcc-login-05  /work/qc59 $ sbatch --array=5 multi_sorcha_test_speed.sh 96 16

Submitted batch job 38560291

384 4

96 16 takes the least amount of time when trying on lsst pointing

Now submit argus st1 jobs on 96 16 ones for the rest of 6-12

(base) qc59@dcc-login-05  /work/qc59 $ sbatch --array=6-12 multi_sorcha_argus_st1.sh 96 16

Submitted batch job 38573821

       38573821_12 scavenger   sorcha     qc59 PD       0:00      1 (AssocGrpMemLimit)

        38573821_6 scavenger   sorcha     qc59  R       0:50      1 dcc-fergusonlab-05

        38573821_7 scavenger   sorcha     qc59  R       0:50      1 dcc-dunsonlab-01

        38573821_8 scavenger   sorcha     qc59  R       0:50      1 dcc-dunsonlab-02

        38573821_9 scavenger   sorcha     qc59  R       0:50      1 dcc-fergusonlab-01

       38573821_10 scavenger   sorcha     qc59  R       0:50      1 dcc-fergusonlab-02

       38573821_11 scavenger   sorcha     qc59  R       0:50      1 dcc-fergusonlab-03

Also submitted for st2 and st3:

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=0-12 multi_sorcha_argus_st2.sh 96 16

Submitted batch job 38583919

(base) qc59@dcc-login-02  **/work/qc59 $** vim multi_sorcha_argus_st3.sh 

(base) qc59@dcc-login-02  **/work/qc59 $** vim multi_sorcha_argus_st3.sh 

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=0-12 multi_sorcha_argus_st3.sh 96 16

Submitted batch job 38583942

(base) qc59@dcc-login-02  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

          38070609 cosmology      run     qc59  R 7-19:22:53      1 dcc-cosmology-13

   38583919_[6-12] scavenger   sorcha     qc59 PD       0:00      1 (Resources)

   38583942_[0-12] scavenger   sorcha     qc59 PD       0:00      1 (Priority)

        38583919_0 scavenger   sorcha     qc59  R       1:35      1 dcc-fergusonlab-05

        38583919_1 scavenger   sorcha     qc59  R       1:35      1 dcc-fergusonlab-01

        38583919_2 scavenger   sorcha     qc59  R       1:35      1 dcc-fergusonlab-02

        38583919_3 scavenger   sorcha     qc59  R       1:35      1 dcc-fergusonlab-03

        38583919_4 scavenger   sorcha     qc59  R       1:35      1 dcc-comp-07

        38583919_5 scavenger   sorcha     qc59  R       1:35      1 dcc-comp-10

thought about the logic of the paper.

10-20

instance 5 failed, but other 3, 4 is successful
poinitng db reading error: possibly due to crowded readin.
now copy .db file per worker:

try it with

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch --array=5 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38540571

(base) qc59@dcc-login-05  **/work/qc59 $** seff 38540571

Job ID: 38540571

Array Job ID: 38540571_5

Cluster: dcc

User/Group: qc59/dukeusers

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 84

CPU Utilized: 4-18:34:50

CPU Efficiency: 23.96% of 19-22:15:48 core-walltime

Job Wall-clock time: 05:41:37

Memory Utilized: 454.29 GB

Memory Efficiency: 82.60% of 550.00 GB (550.00 GB/node)

zz_Attachment folder/Pasted image 20251020140948.png

(base) qc59@dcc-login-02  **~ $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

          38070609 cosmology      run     qc59  R 6-08:25:00      1 dcc-cosmology-13

        38541617_5 scavenger   sorcha     qc59  R      44:30      1 dcc-dolbowlab-01

        38540571_5 scavenger   sorcha     qc59  R    3:09:28      1 dcc-chsi-22

        38540472_5 scavenger   sorcha     qc59  R    3:38:28      1 dcc-chsi-19

Try fewer objects per core

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=5 multi_sorcha_argus_st1.sh 1536 1

Submitted batch job 38541892

(base) qc59@dcc-login-05  **/work/qc59 $** seff 38541892

Job ID: 38541892

Array Job ID: 38541892_5

Cluster: dcc

User/Group: qc59/dukeusers

State: FAILED (exit code 1)

Nodes: 1

Cores per node: 84

CPU Utilized: 15:44:20

CPU Efficiency: 1.19% of 55-07:47:00 core-walltime

Job Wall-clock time: 15:48:25

Memory Utilized: 549.99 GB

Memory Efficiency: 100.00% of 550.00 GB (550.00 GB/node)

10-19

2 has been running succesfully

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=2-3 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38519113

(base) qc59@dcc-login-02  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

          38070609 cosmology      run     qc59  R 5-08:56:26      1 dcc-cosmology-13

        38519113_2 scavenger   sorcha     qc59  R       0:03      1 dcc-dolbowlab-01

        38519113_3 scavenger   sorcha     qc59  R       0:03      1 dcc-dunsonlab-01

pointing not read succesfully

Now add the copy input flag

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=3-5 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38531799

(base) qc59@dcc-login-02  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

          38070609 cosmology      run     qc59  R 5-16:32:31      1 dcc-cosmology-13

        38531799_3 scavenger   sorcha     qc59  R       0:01      1 dcc-chsi-19

        38531799_4 scavenger   sorcha     qc59  R       0:01      1 dcc-dolbowlab-01

        38531799_5 scavenger   sorcha     qc59  R       0:01      1 dcc-dunsonlab-01

10-18

Tried to submit the exact same jobs to see if the other ones are working correctly

38389825_0 scavenger   sorcha     qc59  R    3:25:30      1 dcc-dolbowlab-01

38389825_1 scavenger   sorcha     qc59  R    3:25:30      1 dcc-fergusonlab-01

To compare it with:

(base) qc59@dcc-login-04  **/work/qc59 $** ls -lh sorcha_parallel_run_argus_0_134999_night_st1/run_381

run_38110364_0/  run_38118876_1/  run_38128343_4/  run_38130272_7/  run_38133112_10/

run_38111741_11/ run_38118901_2/  run_38128355_5/  run_38131608_8/  

run_38118792_0/  run_38128223_3/  run_38129491_6/  run_38133045_9/

New file size:

(base) qc59@dcc-login-05  **/work/qc59 $** ls -lh sorcha_parallel_run_argus_0_134999_night_st1_test2/run_38389825_1

total 62G

drwxr-xr-x. 2 qc59 dukeusers 4.0K Oct 17 12:12 **1**

-rw-r--r--. 1 qc59 dukeusers  62G Oct 17 12:11 output_1.h5

Old file size:

(base) qc59@dcc-login-05  **/work/qc59 $** ls -lh sorcha_parallel_run_argus_0_134999_night_st1/run_38118876_1

total 14G

drwxr-xr-x. 2 qc59 dukeusers 4.0K Oct 14 17:38 **1**

-rw-r--r--. 1 qc59 dukeusers  14G Oct 14 17:38 output_1.h5

Adding the debug of the start and end index of the input objID for each array of jobs.
moving the combined output .h5 files from each runxxx folder to a combined df folder for easier data processing later. And added some print statement to debug - like size of the output files.

Now the new multi_sorcha_run file is called multi_sorcha_run_combine.py

And submitted new running jobs:

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=2-3 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38441834

10-17

there are a few that has been run very little
Re-submitted:

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch --array=0-0 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38161096

10-15

Next: combine files from st3
check results from st1,, st4, espcially check if the job has been accomplished.

10-14

processed different stages of LSST objects

do the same for Argus, so I need to run the 10k objects on Argus pointing.

Still need stage 1, 2, 3. turning on the linking false.

First try some small jobs to make sure it works.

(base) qc59@dcc-login-04  **/work/qc59 $** vim multi_sorcha.sh 

(base) qc59@dcc-login-04  **/work/qc59 $** ls sorcha_parallel_run_argus_single_node

**run_37753478_2**  **run_37775565_0**  **run_37775583_0**  **run_37775722_0**  **run_37775745_0**

**run_37753479_0**  **run_37775566_0**  **run_37775596_0**  **run_37775723_0**  **run_37775752_0**

**run_37753479_3**  **run_37775567_0**  **run_37775629_0**  **run_37775724_0**  **run_37775753_0**

**run_37753480_1**  **run_37775568_0**  **run_37775638_0**  **run_37775725_0**

**run_37775564_0**  **run_37775569_0**  **run_37775644_0**  **run_37775741_0**

(base) qc59@dcc-login-04  **/work/qc59 $** seff 37753478

Job ID: 37753478

Array Job ID: 37753478_2

Cluster: dcc

User/Group: qc59/dukeusers

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 60

CPU Utilized: 4-04:13:05

CPU Efficiency: 46.93% of 8-21:33:00 core-walltime

Job Wall-clock time: 03:33:33

Memory Utilized: 234.51 GB

Memory Efficiency: 50.25% of 466.69 GB (466.69 GB/node)

the full array of objects, 768 obj per job, I need to documnet the night time I have chosen.
rows=768, cores_req=32, norbits=24

sorcha_parallel_run_argus_0_134999_night/

**run_37777666_13**  **run_37777669_2**  **run_37778309_5**  **run_37784739_8**   **run_37789480_11**

**run_37777667_0**   **run_37778303_3**  **run_37784535_6**  **run_37789197_9**   **run_37792139_12**

**run_37777668_1**   **run_37778307_4**  **run_37784564_7**  **run_37789373_10**

(base) qc59@dcc-login-04  **/work/qc59 $** seff 37777667

Job ID: 37777667

Array Job ID: 37777666_0

Cluster: dcc

User/Group: qc59/dukeusers

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 60

CPU Utilized: 2-01:09:35

CPU Efficiency: 38.11% of 5-09:00:00 core-walltime

Job Wall-clock time: 02:09:00

Memory Utilized: 240.46 GB

Memory Efficiency: 53.44% of 450.00 GB (450.00 GB/node)

I chose to try double what I have before.
rows=768*2 , cores_req=32, norbits=48

Four stages for Argus

Also try it for 4 stages - my numbering is a bit off compared to the old numbers
st1 nothing is on
Trailing loss always on

st2 turn on vignetting, and mag limit - did not turn off saturation limit of 16 mag, rand off (fisnihed)

st3 turned on rand, but fading off (finished)

camera footprint always on - corresponds to lsst st2

st 4 turn on fading function - corresponds to the lsst st3

st3:

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=0-11 multi_sorcha_argus_st3.sh 48 32

Submitted batch job 38085159
  38085159_[10-11] scavenger   sorcha     qc59 PD       0:00      1 (AssocGrpMemLimit)

        38085159_9 scavenger   sorcha     qc59  R       1:17      1 dcc-dunsonlab-01

        38085159_7 scavenger   sorcha     qc59  R       3:44      1 dcc-fergusonlab-05

        38085159_0 scavenger   sorcha     qc59  R       5:57      1 dcc-dolbowlab-01

        38085159_3 scavenger   sorcha     qc59  R       5:57      1 dcc-dunsonlab-02

        38085159_4 scavenger   sorcha     qc59  R       5:57      1 dcc-fergusonlab-01

        38085159_5 scavenger   sorcha     qc59  R       5:57      1 dcc-fergusonlab-02

        38085159_6 scavenger   sorcha     qc59  R       5:57      1 dcc-fergusonlab-03

output:

(base) qc59@dcc-login-01  **/work/qc59/sorcha_parallel_run_argus_0_134999_night_st3 $** ls

**run_38085035_1**   **run_38085160_0**  **run_38085163_3**  **run_38085166_6**  **run_38085270_9**

**run_38085036_0**   **run_38085161_1**  **run_38085164_4**  **run_38085205_7**  **run_38087102_10**

**run_38085159_11**  **run_38085162_2**  **run_38085165_5**  **run_38085220_8**

st2:

(base) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=0-11 multi_sorcha_argus_st2.sh 48 32

Submitted batch job 38085453
  38085159_[10-11] scavenger   sorcha     qc59 PD       0:00      1 (AssocGrpMemLimit)

next: check the memory usage, ask for more memory usage, and then double check how I labled the stages.

Log files:
outer loop log:
/logs/parallel_sorcha_runxxxx.log
Inner loop log: are in each subfolder of run_xxx_0/0 sorcha_parallel-run

Results are in sorcha_parallel_run_argus_0_134999_night_st2

Some file combination is not working well for st3. Need to manually combine files.

job memory usage: 250 G (st3) or 450G (st 2)

(base) qc59@dcc-login-01  **/work/qc59 $** seff 38085159_4

Job ID: 38085164

Array Job ID: 38085159_4

Cluster: dcc

User/Group: qc59/dukeusers

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 68

CPU Utilized: 4-07:25:12

CPU Efficiency: 43.04% of 10-00:18:16 core-walltime

Job Wall-clock time: 03:32:02

Memory Utilized: 240.79 GB
(base) qc59@dcc-login-01  **/work/qc59 $** seff 38085453_6

Job ID: 38088780

Array Job ID: 38085453_6

Cluster: dcc

User/Group: qc59/dukeusers

State: COMPLETED (exit code 0)

Nodes: 1

Cores per node: 68

CPU Utilized: 4-16:24:36

CPU Efficiency: 29.30% of 15-23:35:44 core-walltime

Job Wall-clock time: 05:38:28

Memory Utilized: 488.43 GB

Memory Efficiency: 88.81% of 550.00 GB (550.00 GB/node)

submitted jobs for st1 and st4

st1

(base) qc59@dcc-login-01  **/work/qc59 $** sbatch --array=0-11 multi_sorcha_argus_st1.sh 48 32

Submitted batch job 38111741

st4

(base) qc59@dcc-login-01  **/work/qc59 $** sbatch --array=0-11 multi_sorcha_argus_st4.sh 48 32

Submitted batch job 38109256

10-11

Finished running, need to proceed to analysis:

impactor_run_0_134999_st1.h5

impactor_run_0_134999_st2.h5

impactor_run_0_134999_st3.h5

10-10

turn on the filters one by one

Trailing loss always on

1 turn on vignetting, and mag limit - did not turn off saturation limit of 16 mag

2 turn on rand

camera footprint always on

3 turn on fading function

4 linking filter. - just turn the drop linking off

1:

(base) qc59@dcc-login-01  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_st1.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_st1 --ew impactor_run_0_134999_st1_complete

Submitted batch job 37874890

2:

(base) qc59@dcc-login-01  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_st2.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_st2 --ew impactor_run_0_134999_st2_complete

Submitted batch job 37874812

3:

(base) qc59@dcc-login-01  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_st3.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_st3 --ew impactor_run_0_134999_st3_complete

Submitted batch job 37874796

make pointing for LSST depth but argus cadence

(base) qc59@dcc-login-01  **/work/qc59 $** sbatch make_argus_pointing.sh

Submitted batch job 37869691

LSST depth:
Key numbers | Rubin Observatory
zz_Attachment folder/Pasted image 20251010111317.png

zz_Attachment folder/Pasted image 20251010110532.png

turn the filters on sequentially, to show how they're correlated?

How to use the same random seed?

Tried to turned on the linking flag, but keep all that's lost by linking

drop_unlinked = False

(base) qc59@dcc-login-05  **/work/qc59 $** sbatch sorcha_run.sh   -c sorcha_config_all.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_all_linking_doc --ew impactor_run_r_150_w_all_linking_doc_complete

Submitted batch job 37867969

Argus with all but linking

(base) qc59@dcc-login-05  **/work/qc59 $** sbatch sorcha_run.sh   -c Argus_circular_approximation.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db sorcha_prerocess/argus_observations_10yr.db -o ./   -t impactor_run_r_150_argus_w_all_but_linking --ew impactor_run_r_150_argus_w_all_but_linking_complete

Submitted batch job 37868093

10-09

ids_na_impactor: the one that gets overlooked while generating impactor information.

to_save = {
"ids_na_impactor": ids_na_impactor,
}
pd.to_pickle(to_save, "ids_na_impactor.pkl")

remake distance plot for impactors

Remake the plots, with standalone_visualize_neos.py
running code:

  ~/Documents/2_Research.nosync/Argus/synthetic_impactors ❯ python standalone_visualize_neos.py \                                                               13s  cosmo_class
    --input ../neo_input_1.h5 \
    --adjusted ../neo_adjusted_epochs_combined_0_134999.h5 \
    --summary ../adjustment_summary_combined_0_134999.csv \
    --objects N000040d \
    --output ./visualizations \
    --adjusted-key table

saved under: synthetic_impactors/visualizations/neo_N000040d_comparison.html
zz_Attachment folder/Pasted image 20251010075110.png

10-08

analyze r50, for the full set
analyze a chunk of the full data, what is the best way to analyze

New full data run for sorcha, with nothing turned on:

/work/qc59/sorcha_parallel_run_argus_0_134999_night

10-07

combine files from sorcha output:

(sorcha) qc59@dcc-login-01  /work/qc59 $ sbatch combine_sorcha_outputs.sh

Submitted batch job 37805940

submitted argus with everythign but linking, with r50 objects:

37805068    common   sorcha     qc59  R    1:44:06      1 dcc-core-30

Combined file:
sbatch combine_sorcha.sh

(base) qc59@dcc-login-02  **/work/qc59 $** seff 37819507

Job ID: 37819507

Cluster: dcc

User/Group: qc59/dukeusers

State: TIMEOUT (exit code 0)

Cores: 1

CPU Utilized: 03:50:34

CPU Efficiency: 95.88% of 04:00:28 core-walltime

Job Wall-clock time: 04:00:28

Memory Utilized: 500.00 GB

Memory Efficiency: 100.00% of 500.00 GB (500.00 GB/node)

10-06

Submit job for 756 obj per job

sbatch --array=0-13 multi_sorcha_argus.sh 24 32

Output:
OUT=/work/qc59/sorcha_parallel_run_argus_single_node/run_${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}

Resubmitted the job for argus, r_50, only night pointings

(base) qc59@dcc-login-05  /work/qc59 $ sbatch sorcha_run.sh -c Argus_circular_approximation.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr_night.db     -o ./     -t impactor_run_r_50_10yr_w_nothing_argus_night_test     --ew impactor_run_r_50_10yr_w_nothing_argus_night_test_complete

Submitted batch job 37783531

Also submitted one on dcc: 37783620    common   sorcha     qc59 PD       0:00      1 (Priority)

The ones that needs to check:

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

   37777666_[9-13] cosmology   sorcha     qc59 PD       0:00      1 (AssocGrpMemLimit)

          37783531 cosmology   sorcha     qc59 PD       0:00      1 (AssocGrpMemLimit)

        37777666_8 cosmology   sorcha     qc59  R    2:01:30      1 dcc-cosmology-06

        37777666_7 cosmology   sorcha     qc59  R    2:06:58      1 dcc-cosmology-11

        37777666_6 cosmology   sorcha     qc59  R    2:08:50      1 dcc-cosmology-12

10-05

to run on argus: this is working:
sbatch --array=0-2 multi_sorcha_argus.sh 2 32

Submitted batch job 37753478

Submitted new pointing, for only during the night time

sbatch make_argus_pointing.sh

Submitted batch job 37771771

Shrinked the Argus pointing size by 2.7 times

(base) qc59@dcc-login-03  **/work/qc59/sorcha_prerocess $** sqlite3 argus_observations_10yr.db           'SELECT COUNT(*) FROM observations;'

5258881

(base) qc59@dcc-login-03  **/work/qc59/sorcha_prerocess $** sqlite3 argus_observations_10yr_night.db     'SELECT COUNT(*) FROM observations;'

1944845

Run on night pointings, submit bash to install time, and also a short probe to test which chunk size is the best.

(sorcha) qc59@dcc-cosmology-15  **/work/qc59/sorcha_prerocess $** for n in 128 160 192 224 256 320; do   jid=$(sbatch --export=ALL,N_OBJS=$n probe_any.sbatch | awk '{print $4}');   echo "$jid $n" | tee -a probe_map.txt; done

37775402 cosmology   sorcha     qc59  R      29:17      1 dcc-cosmology-14

run time error:

first: is 256 obj, 32 cpu
second: the old but running one
thrid: 256 obj, 8 cpu
forth: 256 obj, 1 cpu
last: 128 obj, 1 cpu

37775638 cosmology probe-mu     qc59 PD       0:00      1 (AssocGrpMemLimit)

37775402 cosmology   sorcha     qc59  R    1:18:43      1 dcc-cosmology-14

37775629 cosmology probe-mu     qc59  R       1:10      1 dcc-cosmology-06

37775583 cosmology probe-mu     qc59  R      15:54      1 dcc-cosmology-13
         
             37775644 cosmology probe-mu     qc59 PD       0:00      1 (AssocGrpMemLimit)

newly submitted:

(base) qc59@dcc-login-05  **/work/qc59/sorcha_prerocess $** sbatch -p cosmology --exclusive --cpus-per-task=1 --mem=450G \ 

  --export=ALL,N_OBJS=256,CORES=1 probe_multi.sbatch

  

sbatch -p cosmology --exclusive --cpus-per-task=8 --mem=450G \

  --export=ALL,N_OBJS=256,CORES=8 probe_multi.sbatch

  

sbatch -p cosmology --exclusive --cpus-per-task=32 --mem=450G \

  --export=ALL,N_OBJS=256,CORES=32 probe_multi.sbatch

sbatch -p cosmology --exclusive --cpus-per-task=1 --mem=450G \

  --export=ALL,N_OBJS=128,CORES=1 probe_multi.sbatch

Submitted batch job 37775722

Submitted batch job 37775723

Submitted batch job 37775724

Submitted batch job 37775725

And a few more:

(base) qc59@dcc-login-05  **/work/qc59/sorcha_prerocess $** sbatch -p cosmology --exclusive --cpus-per-task=8 --mem=450G   --export=ALL,N_OBJS=128,CORES=8 probe_multi.sbatch

Submitted batch job 37775741

(base) qc59@dcc-login-05  **/work/qc59/sorcha_prerocess $** sbatch -p cosmology --exclusive --cpus-per-task=1 --mem=450G   --export=ALL,N_OBJS=96,CORES=1 probe_multi.sbatch

Submitted batch job 37775745

(base) qc59@dcc-login-05  **/work/qc59/sorcha_prerocess $** sbatch -p cosmology --exclusive --cpus-per-task=1 --mem=450G   --export=ALL,N_OBJS=160,CORES=1 probe_multi.sbatch

Submitted batch job 37775752

(base) qc59@dcc-login-05  **/work/qc59/sorcha_prerocess $** sbatch -p cosmology --exclusive --cpus-per-task=1 --mem=450G   --export=ALL,N_OBJS=192,CORES=1 probe_multi.sbatch

Submitted batch job 37775753
summary table for these objects:

(base) qc59@dcc-login-05  **~ $** sacct -j 37775402,37775722,37775723,37775724,37775725,37775741,37775745,37775752,37775753   --format=JobID,JobName,Partition,AllocCPUS,ReqMem,State,Elapsed,MaxRSS,AveRSS,NodeList

JobID           JobName  Partition  AllocCPUS     ReqMem      State    Elapsed     MaxRSS     AveRSS        NodeList 

------------ ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- --------------- 

37775402         sorcha  cosmology         60    348432M  COMPLETED   02:52:51                       dcc-cosmology-+ 

37775402.ba+      batch                    60             COMPLETED   02:52:51     30328K     30328K dcc-cosmology-+ 

37775402.ex+     extern                    60             COMPLETED   02:52:51       256K       256K dcc-cosmology-+ 

37775402.0       sorcha                    60             COMPLETED   02:52:47 127634416K 127634416K dcc-cosmology-+ 

37775722     probe-mul+  cosmology         60       450G  COMPLETED   02:52:57                       dcc-cosmology-+ 

37775722.ba+      batch                    60             COMPLETED   02:52:57     29912K     29912K dcc-cosmology-+ 

37775722.ex+     extern                    60             COMPLETED   02:52:57       256K       256K dcc-cosmology-+ 

37775722.0      python3                     1             COMPLETED   02:52:53 128000508K 128000508K dcc-cosmology-+ 

37775723     probe-mul+  cosmology         60       450G  COMPLETED   02:53:46                       dcc-cosmology-+ 

37775723.ba+      batch                    60             COMPLETED   02:53:46     29932K     29932K dcc-cosmology-+ 

37775723.ex+     extern                    60             COMPLETED   02:53:46       256K       256K dcc-cosmology-+ 

37775723.0      python3                     8             COMPLETED   02:53:42 128003764K 128003764K dcc-cosmology-+ 

37775724     probe-mul+  cosmology         60       450G  COMPLETED   02:51:55                       dcc-cosmology-+ 

37775724.ba+      batch                    60             COMPLETED   02:51:55     29980K     29980K dcc-cosmology-+ 

37775724.ex+     extern                    60             COMPLETED   02:51:55       256K       256K dcc-cosmology-+ 

37775724.0      python3                    32             COMPLETED   02:51:51 128002516K 128002516K dcc-cosmology-+ 

37775725     probe-mul+  cosmology         60       450G  COMPLETED   01:49:03                       dcc-cosmology-+ 

37775725.ba+      batch                    60             COMPLETED   01:49:03     29968K     29968K dcc-cosmology-+ 

37775725.ex+     extern                    60             COMPLETED   01:49:03       256K       256K dcc-cosmology-+ 

37775725.0      python3                     1             COMPLETED   01:48:59  62890416K  62890416K dcc-cosmology-+ 

37775741     probe-mul+  cosmology         60       450G  COMPLETED   01:49:50                       dcc-cosmology-+ 

37775741.ba+      batch                    60             COMPLETED   01:49:50     30200K     30200K dcc-cosmology-+ 

37775741.ex+     extern                    60             COMPLETED   01:49:51          0          0 dcc-cosmology-+ 

37775741.0      python3                     8             COMPLETED   01:49:45  62890208K  62890208K dcc-cosmology-+ 

37775745     probe-mul+  cosmology         60       450G  COMPLETED   01:33:06                       dcc-cosmology-+ 

37775745.ba+      batch                    60             COMPLETED   01:33:06     29932K     29932K dcc-cosmology-+ 

37775745.ex+     extern                    60             COMPLETED   01:33:06       256K       256K dcc-cosmology-+ 

37775745.0      python3                     1             COMPLETED   01:33:01  47317588K  47317588K dcc-cosmology-+ 

37775752     probe-mul+  cosmology         60       450G  COMPLETED   02:05:11                       dcc-cosmology-+ 

37775752.ba+      batch                    60             COMPLETED   02:05:11     30228K     30228K dcc-cosmology-+ 

37775752.ex+     extern                    60             COMPLETED   02:05:11       256K       256K dcc-cosmology-+ 

37775752.0      python3                     1             COMPLETED   02:05:07  78195620K  78195620K dcc-cosmology-+ 

37775753     probe-mul+  cosmology         60       450G  COMPLETED   02:18:11                       dcc-cosmology-+ 

37775753.ba+      batch                    60             COMPLETED   02:18:11     29932K     29932K dcc-cosmology-+ 

37775753.ex+     extern                    60             COMPLETED   02:18:11       256K       256K dcc-cosmology-+ 

37775753.0      python3                     1             COMPLETED   02:18:06  93124744K  93124744K dcc-cosmology-+
JobID N Objs Cores (CORES) CPUs per task Elapsed MaxRSS (GB) Notes
37775745 96 1 1 01:33:01 47.3 GB Small sample, short, clean run
37775752 160 1 1 02:05:07 78.2 GB Scales roughly linearly
37775753 192 1 1 02:18:06 93.1 GB Consistent trend
37775725 256 1 1 01:48:59 62.9 GB Faster than smaller jobs (likely cache effects)
37775741 128 8 8 01:49:45 62.9 GB Same mem as 256/1core; runtime ~2× faster than 1 core
37775722 256 1 1 02:52:53 128.0 GB Full 256 objs, 1 core baseline
37775723 256 8 8 02:53:42 128.0 GB Essentially identical runtime to 1 core—no speedup
37775724 256 32 32 02:51:51 128.0 GB No improvement; likely I/O bottleneck
37775402 (baseline “sorcha”) 02:52:47 127.6 GB Same memory footprint

10-03

run for objects r>50

with every filter:

sbatch sorcha_run_2.sh -c sorcha_config_demo.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db baseline_v3.4_10yrs.db     -o ./     -t impactor_run_r_50_10yr_w_everything     --ew impactor_run_r_50_10yr_w_everything_complete

Submitted batch job 37717058

with linking only

sbatch sorcha_run_2.sh   -c sorcha_config_demo.ini -p ./r_50_color.csv --orbits r_50_orbit.csv --pointing-db baseline_v3.4_10yrs.db -o ./ -t impactor_run_r_50_w_linking

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch sorcha_run_2.sh -c sorcha_config_demo.ini   -p ./r_50_color.csv     --orbits ./r_50_orbit.csv     --pointing-db baseline_v3.4_10yrs.db     -o ./     -t impactor_run_r_50_10yr_w_linking     --ew impactor_run_r_50_10yr_w_linking_complete

Submitted batch job 37667624: agmentation error

Cleaned the nan rows. 

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch sorcha_run_2.sh -c sorcha_config_demo.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db baseline_v3.4_10yrs.db     -o ./     -t impactor_run_r_50_10yr_w_linking     --ew impactor_run_r_50_10yr_w_linking_complete

Submitted batch job 37668116

succeeded

And with nothing:

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch sorcha_run_2.sh -c sorcha_config_nothing.ini   -p ./r_50_color.csv     --orbits ./r_50_orbit.csv     --pointing-db baseline_v3.4_10yrs.db     -o ./     -t impactor_run_r_50_10yr_nothing     --ew impactor_run_r_50_10yr_nothing_complete

Submitted batch job 37667741
should not work...
New job submitted

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch sorcha_run_2.sh   -c sorcha_config_nothing.ini -p ./cleaned_r_50_color.csv --orbits cleaned_r_50_orbit.csv --pointing-db baseline_v3.4_10yrs.db -o ./ -t impactor_run_r_50_nothing

Submitted batch job 37668457

not succeeded - is it memory issue?
assigning more memory and try again:

sbatch sorcha_run_2.sh   -c sorcha_config_nothing.ini -p ./cleaned_r_50_color.csv --orbits cleaned_r_50_orbit.csv --pointing-db baseline_v3.4_10yrs.db -o ./ -t impactor_run_r_50_nothing

Submitted batch job 37697825

And wiht Argus, r>50

sbatch sorcha_run_2.sh -c Argus_circular_approximation.ini   -p ./r_50_color.csv     --orbits ./r_50_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db     -o ./     -t impactor_run_r_50_10yr_nothing_argus     --ew impactor_run_r_50_10yr_nothing_argus_complete

Submitted batch job 37667941:
should not work.,,,
new job submitted

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch sorcha_run_2.sh -c Argus_circular_approximation.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db     -o ./     -t impactor_run_r_50_10yr_nothing_argus     --ew impactor_run_r_50_10yr_nothing_argus_complete

Submitted batch job 37668476

potential memory issue:
tried again:

sbatch sorcha_run_2.sh -c Argus_circular_approximation.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db     -o ./     -t impactor_run_r_50_10yr_w_nothing_argus     --ew impactor_run_r_50_10yr_w_nothing_argus_complete

Submitted batch job 37698131

still not working, try with single node:
sbatch sorcha_run_2.sh -c Argus_circular_approximation.ini   -p ./cleaned_r_50_color.csv     --orbits ./cleaned_r_50_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db     -o ./     -t impactor_run_r_50_10yr_w_nothing_argus     --ew impactor_run_r_50_10yr_w_nothing_argus_complete

Submitted batch job 37726913

Still will be no memory, now try with

(base) qc59@dcc-login-05  **/work/qc59 $** sbatch --array=0-2 multi_sorcha_argus.sh 2 32

Submitted batch job 37753478

(base) qc59@dcc-login-05  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

        37753478_0 cosmology   sorcha     qc59  R       0:13      1 dcc-cosmology-12

        37753478_1 cosmology   sorcha     qc59  R       0:13      1 dcc-cosmology-13

        37753478_2 cosmology   sorcha     qc59  R       0:13      1 dcc-cosmology-14

(base) qc59@dcc-login-05  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

        37753478_0 cosmology   sorcha     qc59  R    1:58:09      1 dcc-cosmology-12

        37753478_1 cosmology   sorcha     qc59  R    1:58:09      1 dcc-cosmology-13

        37753478_2 cosmology   sorcha     qc59  R    1:58:09      1 dcc-cosmology-14

(base) qc59@dcc-login-05  **/work/qc59 $** squeue -u qc59

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

        37753478_0 cosmology   sorcha     qc59  R    1:58:28      1 dcc-cosmology-12

        37753478_1 cosmology   sorcha     qc59  R    1:58:28      1 dcc-cosmology-13

        37753478_2 cosmology   sorcha     qc59  R    1:58:28      1 dcc-cosmology-14
srun -n 1 -c ${SLURM_CPUS_PER_TASK} python3 multi_sorcha_write.py \

  --config Argus_circular_approximation.ini \

  --input_orbits ./cleaned_r_50_orbit.csv \

  --input_physical ./cleaned_r_50_color.csv \

  --pointing-db sorcha_prerocess/argus_observations_10yr.db \

  --path "$OUT" \

  --chunksize $(($1 * $2)) \

  --norbits $1 \

  --cores $2 \

  --instance ${SLURM_ARRAY_TASK_ID} \

  --cleanup \

  --copy_inputs\

  --merge_format h5

Results are in:

(base) qc59@dcc-login-05  **/work/qc59/sorcha_parallel_run_argus_single_node $** ls

**run_37753478_2**  **run_37753479_0**  **run_37753480_1**

combine files:

python combine_files.py --input-dir ../synthetic_impactors/neo_analysis_output_test --pattern "adjustment_summary_*.csv" --out ../synthetic_impactors/neo_analysis_output_test/adjustment_summary_combined_0_134999.csv --out-format csv --dedupe ObjID --keep last

10-02

Running with the cleaned version of data, with nothing on:

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch sorcha_run.sh   -c sorcha_config_nothing.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_w_bright --ew impactor_run_0_134999_w_bright_complete

Submitted batch job 37631169

Running the same (cleaned files) with LSST, just with linking turned on.

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./cleaned_synthetic_impactors_0_134999_color.csv    --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_134999_w_linking_bright --ew impactor_run_0_134999_w_linking_bright_complete

Submitted batch job 37630647

Done jobs:

impactor_run_0_134999_w_linking_bright-2025-10-02-12-10-11-p2713556-sorcha.err

impactor_run_0_134999_w_linking_bright-2025-10-02-12-10-11-p2713556-sorcha.log

impactor_run_0_134999_w_linking_bright_complete.csv

impactor_run_0_134999_w_linking_bright.h5

And maybe one with nothing turned on: done, with parallel running

Without linking on, argus on all objects

sbatch --array=0-2 multi_sorcha.sh 156 32

OUT=/work/qc59/sorcha_parallel_run/run_${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}

mkdir -p "$OUT"

  

srun -n 1 -c ${SLURM_CPUS_PER_TASK} python3 multi_sorcha_write.py \

  --config Argus_circular_approximation.ini \

  --input_orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv \

  --input_physical ./cleaned_synthetic_impactors_0_134999_color.csv \

  --pointing-db sorcha_prerocess/argus_observations_10yr.db \

  --path "$OUT" \

  --chunksize $(($1 * $2)) \

  --norbits $1 \

  --cores $2 \

  --instance ${SLURM_ARRAY_TASK_ID} \

  --cleanup \

  --copy_inputs\

  --merge_format h5

  # optionally add: --assist_cache /hpc/home/qc59/.cache/sorcha

  # optionally add: --stats neo_stats
submited jobs:
        37639514_2 cosmology   sorcha     qc59  R    1:03:14      1 dcc-cosmology-10

        37639514_0 cosmology   sorcha     qc59  R    5:13:14      1 dcc-cosmology-01

        37639514_1 cosmology   sorcha     qc59  R    5:13:14      1 dcc-cosmology-02

Retry, with cosmology partition, 300 G mem, smaller chunk

(sorcha) qc59@dcc-login-04  **/work/qc59 $** sbatch --array=0-13 multi_sorcha.sh 32 32

Submitted batch job 37698940
#!/bin/bash

#SBATCH --job-name=sorcha

#SBATCH --partition=cosmology

#SBATCH --nodes=1

#SBATCH --ntasks=1                  # 1 Python process that uses multiprocessing

#SBATCH --cpus-per-task=32          # match the node's 76 CPUs

#SBATCH --mem=300G                  # a safe request below 348432 MB

#SBATCH --time=24:00:00

#SBATCH --output=./logs/parallel_sorcha-argus-%J.log

  

# Run from the directory where you called sbatch

cd "$SLURM_SUBMIT_DIR"

  

# --- Conda setup ---

# If your cluster uses modules, you may need: module load anaconda (or similar)

source "$(conda info --base)/etc/profile.d/conda.sh"

conda activate sorcha

  

OUT=/work/qc59/sorcha_parallel_run_argus/run_${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}

mkdir -p "$OUT"

  

srun -n 1 -c ${SLURM_CPUS_PER_TASK} python3 multi_sorcha_write.py \

  --config Argus_circular_approximation.ini \

  --input_orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv \

  --input_physical ./cleaned_synthetic_impactors_0_134999_color.csv \

  --pointing-db sorcha_prerocess/argus_observations_10yr.db \

  --path "$OUT" \

  --chunksize $(($1 * $2)) \

  --norbits $1 \

  --cores $2 \

  --instance ${SLURM_ARRAY_TASK_ID} \

  --cleanup \

  --copy_inputs\

  --merge_format h5

  # optionally add: --assist_cache /hpc/home/qc59/.cache/sorcha

  # optionally add: --stats neo_stats

This still won't work for all of the jobs. Very likely memory issue.

Also with linking on, tried smaller chunk size, so lower memory requirement.

sbatch --array=0-13 multi_sorcha_argus_filtering.sh 32 32

Tried 1k obj per job, with filtering (linking) for argus

(base) qc59@dcc-login-02  **/work/qc59 $** sbatch --array=0-13 multi_sorcha_argus_filtering.sh 32 32

Submitted batch job 37655849

Killed by lack of memory 

Inside the .sh file:

  

OUT=/work/qc59/sorcha_parallel_run_argus_w_linking/run_${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}

mkdir -p "$OUT"

  

srun -n 1 -c ${SLURM_CPUS_PER_TASK} python3 multi_sorcha_write.py \

  --config Argus_circular_approximation_filtering.ini \

  --input_orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv \

  --input_physical ./cleaned_synthetic_impactors_0_134999_color.csv \

  --pointing-db sorcha_prerocess/argus_observations_10yr.db \

  --path "$OUT" \

  --chunksize $(($1 * $2)) \

  --norbits $1 \

  --cores $2 \

  --instance ${SLURM_ARRAY_TASK_ID} \

  --cleanup \

  --copy_inputs\

  --merge_format h5

  # optionally add: --assist_cache /hpc/home/qc59/.cache/sorcha

  # optionally add: --stats neo_stats

retried on 10/03, with more memory

sbatch --array=0-13 multi_sorcha_argus_filtering.sh 32 32

Submitted batch job 3769995

inside .sh:

#!/bin/bash

#SBATCH --job-name=sorcha

##SBATCH --partition=cosmology

#SBATCH --nodes=1

#SBATCH --ntasks=1                  # 1 Python process that uses multiprocessing

#SBATCH --cpus-per-task=32          # match the node's 76 CPUs

#SBATCH --mem=300G                  # a safe request below 348432 MB

##SBATCH --time=24:00:00

#SBATCH --output=./logs/parallel-sorcha-argus-%J.log

  

# Run from the directory where you called sbatch

cd "$SLURM_SUBMIT_DIR"

  

# --- Conda setup ---

# If your cluster uses modules, you may need: module load anaconda (or similar)

source "$(conda info --base)/etc/profile.d/conda.sh"

conda activate sorcha

  

OUT=/work/qc59/sorcha_parallel_run_argus_w_linking_2/run_${SLURM_JOB_ID}_${SLURM_ARRAY_TASK_ID}

mkdir -p "$OUT"

  

srun -n 1 -c ${SLURM_CPUS_PER_TASK} python3 multi_sorcha_write.py \

  --config Argus_circular_approximation_filtering.ini \

  --input_orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv \

  --input_physical ./cleaned_synthetic_impactors_0_134999_color.csv \

  --pointing-db sorcha_prerocess/argus_observations_10yr.db \

  --path "$OUT" \

  --chunksize $(($1 * $2)) \

  --norbits $1 \

  --cores $2 \

  --instance ${SLURM_ARRAY_TASK_ID} \

  --cleanup \

  --copy_inputs\

  --merge_format h5

  # optionally add: --assist_cache /hpc/home/qc59/.cache/sorcha

  # optionally add: --stats neo_stats

10-01

Sorcha with Argus:
recovered 3 out of the 4 large impactors lost by LSST linking
sbatch sorcha_run.sh   -c Argus_circular_approximation.ini   -p ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_color.csv   --orbits ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_orbit.csv   --pointing-db  sorcha_prerocess/argus_observations_10yr.db  -o ./   -t impactor_run_0_134999_10yr_argus_w_rand_fading --ew impactor_run_0_134999_10yr_argus_w_rand_fading_complete

sbatch sorcha_run.sh   -c Argus_circular_approximation.ini   -p ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_color.csv   --orbits ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db -o ./   -t impactor_run_0_134999_10yr_argus_w_rand_fading --ew impactor_run_0_134999_10yr_argus_w_rand_fading_complete

srun: error: dcc-cosmology-14: task 0: Exited with exit code 245
Get this new file to clean the input data
clean_input_data.py

python ./sorcha_prerocess/clean_input_data.py     -c ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_color.csv     --orbits ./synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_134999_orbit.csv     -o cleaned_synthetic_impactors_0_134999

Not cleaned input orbit and color file: with some nan values.

============================================================

NaN Statistics:

============================================================

Rows with NaN in color file only:  0

Rows with NaN in orbit file only:  93

Rows with NaN in both files:       0

Total rows with NaN (either file): 93

Clean rows (no NaN):                17424

============================================================

  

  

Columns with NaN in orbit file:

  epochMJD_TDB: 93 NaN values

  

Saving cleaned files:

  cleaned_synthetic_impactors_0_134999_color.csv (17424 rows)

  cleaned_synthetic_impactors_0_134999_orbit.csv (17424 rows)

  

Saving filtered NaN rows:

  cleaned_synthetic_impactors_0_134999_color_nan_rows.csv (93 rows)

  cleaned_synthetic_impactors_0_134999_orbit_nan_rows.csv (93 rows)

  

============================================================

Cleaning complete!

============================================================

Original: 17517 objects

Cleaned:  17424 objects

Removed:  93 objects (0.53%)

test on argus, with rand and fading

(sorcha) qc59@dcc-login-02  **/work/qc59 $** sbatch sorcha_run.sh -c Argus_circular_approximation.ini     -p ./cleaned_synthetic_impactors_0_134999_color.csv     --orbits ./cleaned_synthetic_impactors_0_134999_orbit.csv     --pointing-db sorcha_prerocess/argus_observations_10yr.db     -o ./     -t impactor_run_0_134999_10yr_argus_w_rand_fading     --ew impactor_run_0_134999_10yr_argus_w_rand_fading_complete

Submitted batch job 37584001

It failed becauase of out of memory. Let me do the parallel thing, wiht multi_sorcha.sh

09-29

Argus

(base) qc59@dcc-login-03  /work/qc59 $ sbatch sorcha_run.sh   -c Argus_circular_approximation.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db sorcha_prerocess/argus_observations_10yr.db -o ./   -t impactor_run_r_150_argus_no_anything_rand --ew impactor_run_r_150_argus_no_anything_rand_complete

Submitted batch job 37428677

(base) qc59@dcc-login-03  /work/qc59 $ squeue -u qc59

JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

37428677 cosmology   sorcha     qc59  R       0:29      1 dcc-cosmology-15

to test what is preventing them been seen:

from bottom to top:

Linking - bright limit - fading function - FOV - randomizing astrometry and photometry (SNR - vignetting depth correction, randomizing)

nothing off, the previous log

vim impactor_run_no_detection_150-2025-09-25-10-26-32-p3158294-sorcha.log

everything off

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_no_anything_rand --ew impactor_run_r_150_no_anything_rand_complete

Submitted batch job 37428616

impactor_run_r_150_no_anything_rand.h5

Only with random turned on:

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_rand --ew impactor_run_r_150_w_rand_complete

Submitted batch job 37431146

vim impactor_run_r_150_w_rand-2025-09-29-14-05-57-p2389426-sorcha.log
impactor_run_r_150_w_rand_complete.csv
impactor_run_r_150_w_rand.h5

2025-09-29 14:11:03,420 sorcha.sorcha INFO     Ephemeris generation completed

2025-09-29 14:11:03,420 sorcha.sorcha INFO     Start post processing for this chunk

2025-09-29 14:11:03,420 sorcha.sorcha INFO     Matching pointing database information to observations on rough camera footprint

2025-09-29 14:11:03,449 sorcha.sorcha INFO     Calculating apparent magnitudes...

2025-09-29 14:11:03,449 sorcha.modules.PPCalculateApparentMagnitude INFO     Selecting and applying correct colour offset...

2025-09-29 14:11:03,486 sorcha.modules.PPCalculateApparentMagnitude INFO     Calculating apparent magnitude in filter...

2025-09-29 14:11:03,492 sorcha.sorcha INFO     Calculating trailing losses...

2025-09-29 14:11:03,494 sorcha.sorcha INFO     Vignetting turned OFF in config file. 5-sigma depth of field will be used for subsequent calculations.

2025-09-29 14:11:03,494 sorcha.sorcha INFO     Calculating astrometric and photometric uncertainties...

2025-09-29 14:11:03,499 sorcha.sorcha INFO     Number of rows BEFORE randomizing astrometry and photometry: 30277

2025-09-29 14:11:03,499 sorcha.modules.PPRandomizeMeasurements INFO     Removing all observations with SNR < 2.0...

2025-09-29 14:11:03,511 sorcha.modules.PPRandomizeMeasurements INFO     Randomising photometry...

2025-09-29 14:11:03,512 sorcha.utilities.sorchaArguments INFO     the rng seed for the sorcha.modules.PPRandomizeMeasurements module is 1125435990

2025-09-29 14:11:03,513 sorcha.modules.PPRandomizeMeasurements INFO     Randomizing astrometry...

2025-09-29 14:11:03,517 sorcha.sorcha INFO     Number of rows AFTER randomizing astrometry and photometry: 17826

2025-09-29 14:11:03,518 sorcha.sorcha INFO     Applying field-of-view filters...

2025-09-29 14:11:03,518 sorcha.sorcha INFO     Number of rows BEFORE applying FOV filters: 17826

2025-09-29 14:11:03,518 sorcha.modules.PPApplyFOVFilter INFO     Applying sensor footprint filter...

2025-09-29 14:11:03,557 sorcha.sorcha INFO     Number of rows AFTER applying FOV filters: 10393

only vignetting depth correction turned on

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_depcor --ew impactor_run_r_150_w_depcor_complete

Submitted batch job 37431368
impactor_run_r_150_w_depcor-2025-09-29-14-14-05-p2390060-sorcha.err

impactor_run_r_150_w_depcor-2025-09-29-14-14-05-p2390060-sorcha.log

impactor_run_r_150_w_depcor_complete.csv

impactor_run_r_150_w_depcor.h5
2025-09-29 14:19:08,356 sorcha.sorcha INFO     Number of rows BEFORE applying FOV filters: 30277

2025-09-29 14:19:08,356 sorcha.modules.PPApplyFOVFilter INFO     Applying sensor footprint filter...

2025-09-29 14:19:08,402 sorcha.sorcha INFO     Number of rows AFTER applying FOV filters: 17467
2025-09-29 14:05:57,347 sorcha.utilities.sorchaArguments INFO     the base rng seed is 2204404253

2025-09-29 14:11:03,512 sorcha.utilities.sorchaArguments INFO     the rng seed for the sorcha.modules.PPRandomizeMeasurements module is 1125435990

only fading function turned on

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_fading --ew impactor_run_r_150_w_fading_complete

Submitted batch job 37432980
impactor_run_r_150_w_fading-2025-09-29-14-32-43-p2391475-sorcha.err

impactor_run_r_150_w_fading-2025-09-29-14-32-43-p2391475-sorcha.log

impactor_run_r_150_w_fading_complete.csv

impactor_run_r_150_w_fading.h5
2025-09-29 14:32:43,751 sorcha.utilities.sorchaArguments INFO     the base rng seed is 4049589991
2025-09-29 14:37:45,875 sorcha.sorcha INFO     Number of rows BEFORE applying FOV filters: 30277

2025-09-29 14:37:45,875 sorcha.modules.PPApplyFOVFilter INFO     Applying sensor footprint filter...

2025-09-29 14:37:45,920 sorcha.sorcha INFO     Number of rows AFTER applying FOV filters: 17467

2025-09-29 14:37:45,920 sorcha.sorcha INFO     Applying detection efficiency fading function...

2025-09-29 14:37:45,920 sorcha.sorcha INFO     Number of rows BEFORE applying fading function: 17467

2025-09-29 14:37:45,920 sorcha.modules.PPFadingFunctionFilter INFO     Calculating probabilities of detections...

2025-09-29 14:37:45,921 sorcha.modules.PPFadingFunctionFilter INFO     Dropping observations below detection threshold...

2025-09-29 14:37:45,921 sorcha.utilities.sorchaArguments INFO     the rng seed for the sorcha.modules.PPDropObservations module is 886358178

2025-09-29 14:37:45,923 sorcha.sorcha INFO     Number of rows AFTER applying fading function: 7755

only with linking turned on

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_linking --ew impactor_run_r_150_w_linking_complete

Submitted batch job 37434245
impactor_run_r_150_w_linking-2025-09-29-14-45-22-p2392470-sorcha.err

impactor_run_r_150_w_linking-2025-09-29-14-45-22-p2392470-sorcha.log

impactor_run_r_150_w_linking_complete.csv

impactor_run_r_150_w_linking.h5
2025-09-29 14:50:26,252 sorcha.sorcha INFO     Applying field-of-view filters...

2025-09-29 14:50:26,252 sorcha.sorcha INFO     Number of rows BEFORE applying FOV filters: 30277

2025-09-29 14:50:26,252 sorcha.modules.PPApplyFOVFilter INFO     Applying sensor footprint filter...

2025-09-29 14:50:26,309 sorcha.sorcha INFO     Number of rows AFTER applying FOV filters: 17467

2025-09-29 14:50:26,309 sorcha.sorcha INFO     Applying SSP linking filter...

2025-09-29 14:50:26,309 sorcha.sorcha INFO     Number of rows BEFORE applying SSP linking filter: 17467

2025-09-29 14:50:26,624 sorcha.sorcha INFO     Number of rows AFTER applying SSP linking filter: 17347

only with brightness limit turned on

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_bright --ew impactor_run_r_150_w_bright_complete

Submitted batch job 37435413

with everything turned on

(base) qc59@dcc-login-03  **/work/qc59 $** sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_everything --ew impactor_run_r_150_w_everything_complete

Submitted batch job 37435280
impactor_run_r_150_w_everything-2025-09-29-15-14-52-p2394345-sorcha.err

impactor_run_r_150_w_everything-2025-09-29-15-14-52-p2394345-sorcha.log

impactor_run_r_150_w_everything_complete.csv

impactor_run_r_150_w_everything.h5

Distribution plot
zz_Attachment folder/Pasted image 20250929160611.png

with fading, linking, and bright

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_linking_fading_bright --ew impactor_run_r_150_w_linking_fading_bright_complete

Submitted batch job 37436364
impactor_run_r_150_w_linking_fading_bright-2025-09-29-16-04-27-p2397675-sorcha.err

impactor_run_r_150_w_linking_fading_bright-2025-09-29-16-04-27-p2397675-sorcha.log

impactor_run_r_150_w_linking_fading_bright_complete.csv

impactor_run_r_150_w_linking_fading_bright.h5

with linking, randomizing, and bright

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./r_150_color.csv    --orbits ./r_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_r_150_w_linking_rand_bright --ew impactor_run_r_150_w_linking_rand_bright_complete

Submitted batch job 37436578

09-26

With no fading function
(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./in_detection_150_color.csv    --orbits ./in_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_in_detection_150_no_fading --ew impactor_run_in_detection_150_no_fading_complete -f

Submitted batch job 37333161

(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./no_detection_150_color.csv    --orbits ./no_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_no_detection_150_no_fading --ew impactor_run_no_detection_150_no_fading_complete -f

Submitted batch job 37333186

still not returning all of them

Now try turning off any other filtering
(base) qc59@dcc-login-04  /work/qc59 $ vim sorcha_config_demo.ini

(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./no_detection_150_color.csv    --orbits ./no_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_no_detection_150_no_anything --ew impactor_run_no_detection_150_no_anything_complete -f

Submitted batch job 37337323

(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./in_detection_150_color.csv    --orbits ./in_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_in_detection_150_no_anything --ew impactor_run_in_detection_150_no_anything_complete -f

Submitted batch job 37337358

5 sigma depth
FOV filtering

09-25

The full data returned by sorcha is before randomizing astrometry and photometry
zz_Attachment folder/Pasted image 20250925113331.png
Some randomness in the detection

zz_Attachment folder/Pasted image 20250925104614.png
zz_Attachment folder/Pasted image 20250925104637.png

09-24

submitted job for >150m, but has no detection
(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./no_detection_150_color.csv    --orbits ./no_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_no_detection_150 --ew impactor_run_no_detection_150

Submitted batch job 37239745

And the one indetection:
(base) qc59@dcc-login-04  /work/qc59 $ sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p ./in_detection_150_color.csv    --orbits ./in_detection_150_orbit.csv    --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_in_detection_150 --ew impactor_run_in_detection_150_complete

Submitted batch job 37240020

Todo: compare the results, check their logs to see if they abandomed some unobserved ones.

impact distance plot is working

impactor_distance.ipnb
zz_Attachment folder/Pasted image 20250924201800.png

09-24

Look into the big guys, undetected
zz_Attachment folder/Pasted image 20250924133118.png
This one is detected during the DDF survey
zz_Attachment folder/Pasted image 20250924140539.png
lsst-patches.ipnb
make_schedule_timeline()

zz_Attachment folder/Pasted image 20250924201847.png

09-22

neo_adjusted_epochs_134000_134999.h5: 145/145 rows used
TOTAL rows seen: 17517

09-21

92000 - 95000 seems to be done by previous loops. Should double check.
submitted another 40,000:

(base) qc59@dcc-login-04  /work/qc59 $ ./synthetic_impactors_multi_submit.sh 95000 135000 20000 1000

Submitting parallel NEO analysis jobs:

Global range:  95000 to 135000 (exclusive)

Chunk size:    20000     (per job's assigned range)

Window size:   1000    (save every N NEOs within each job)

Submitted job 36899290 for range 95000-114999 (window=1000)

Submitted job 36899291 for range 115000-134999 (window=1000)

Submitted 2 jobs total.

Monitor: squeue -u qc59

Logs:    logs/

0-94999 has been created orbit and color files

(sorcha) qc59@dcc-login-04  /work/qc59 $ sbatch preprocess_orbit_color.sh

Submitted batch job 36901288

  - Synthetic_Impactors_combined_0_94999_orbit.csv: 12238 rows

  

No duplicate ObjIDs across files detected (by filename provenance).

  

Summary:

  neo_adjusted_epochs_0_999.h5: 130/130 rows used

  neo_adjusted_epochs_1000_1999.h5: 126/126 rows used

  neo_adjusted_epochs_2000_2999.h5: 140/140 rows used

  neo_adjusted_epochs_3000_3999.h5: 122/122 rows used

  neo_adjusted_epochs_4000_4999.h5: 115/115 rows used

  neo_adjusted_epochs_5000_5999.h5: 139/139 rows used

  neo_adjusted_epochs_6000_6999.h5: 139/139 rows used

  neo_adjusted_epochs_7000_7999.h5: 146/146 rows used

  neo_adjusted_epochs_8000_8999.h5: 126/126 rows used

  neo_adjusted_epochs_9000_9999.h5: 129/129 rows used

  neo_adjusted_epochs_10000_10999.h5: 122/122 rows used

  neo_adjusted_epochs_11000_11999.h5: 149/149 rows used

  neo_adjusted_epochs_12000_21999.h5: 1322/1322 rows used

  neo_adjusted_epochs_22000_31999.h5: 1276/1276 rows used

  neo_adjusted_epochs_32000_41999.h5: 1279/1279 rows used

  neo_adjusted_epochs_42000_51999.h5: 1305/1305 rows used

  neo_adjusted_epochs_52000_52999.h5: 114/114 rows used

  neo_adjusted_epochs_53000_53999.h5: 127/127 rows used

  neo_adjusted_epochs_54000_54999.h5: 141/141 rows used

  neo_adjusted_epochs_55000_55999.h5: 136/136 rows used

  neo_adjusted_epochs_56000_56999.h5: 125/125 rows used

  neo_adjusted_epochs_57000_57999.h5: 122/122 rows used

  neo_adjusted_epochs_58000_58999.h5: 121/121 rows used

  neo_adjusted_epochs_59000_59999.h5: 128/128 rows used

  neo_adjusted_epochs_60000_60999.h5: 116/116 rows used

  neo_adjusted_epochs_61000_61999.h5: 117/117 rows used

  neo_adjusted_epochs_62000_62999.h5: 111/111 rows used

  neo_adjusted_epochs_63000_63999.h5: 137/137 rows used

  neo_adjusted_epochs_64000_64999.h5: 141/141 rows used

  neo_adjusted_epochs_65000_65999.h5: 133/133 rows used

  neo_adjusted_epochs_66000_66999.h5: 118/118 rows used

  neo_adjusted_epochs_67000_67999.h5: 136/136 rows used

  neo_adjusted_epochs_68000_68999.h5: 137/137 rows used

  neo_adjusted_epochs_69000_69999.h5: 130/130 rows used

  neo_adjusted_epochs_70000_70999.h5: 119/119 rows used

  neo_adjusted_epochs_71000_71999.h5: 126/126 rows used

  neo_adjusted_epochs_72000_72999.h5: 135/135 rows used

  neo_adjusted_epochs_73000_73999.h5: 123/123 rows used

  neo_adjusted_epochs_74000_74999.h5: 134/134 rows used

  neo_adjusted_epochs_75000_75999.h5: 133/133 rows used

  neo_adjusted_epochs_76000_76999.h5: 134/134 rows used

  neo_adjusted_epochs_77000_77999.h5: 111/111 rows used

  neo_adjusted_epochs_78000_78999.h5: 124/124 rows used

  neo_adjusted_epochs_79000_79999.h5: 125/125 rows used

  neo_adjusted_epochs_80000_80999.h5: 126/126 rows used
  
  neo_adjusted_epochs_81000_81999.h5: 126/126 rows used

  neo_adjusted_epochs_82000_82999.h5: 130/130 rows used

  neo_adjusted_epochs_83000_83999.h5: 126/126 rows used

  neo_adjusted_epochs_84000_84999.h5: 148/148 rows used

  neo_adjusted_epochs_85000_85999.h5: 131/131 rows used

  neo_adjusted_epochs_86000_86999.h5: 119/119 rows used

  neo_adjusted_epochs_87000_87999.h5: 134/134 rows used

  neo_adjusted_epochs_88000_88999.h5: 113/113 rows used

  neo_adjusted_epochs_89000_89999.h5: 125/125 rows used

  neo_adjusted_epochs_90000_90999.h5: 120/120 rows used

  neo_adjusted_epochs_91000_91999.h5: 136/136 rows used

  neo_adjusted_epochs_92000_92999.h5: 145/145 rows used

  neo_adjusted_epochs_93000_93999.h5: 125/125 rows used

  neo_adjusted_epochs_94000_94999.h5: 115/115 rows used

  

TOTAL rows seen: 12238

Note: final combined counts reported above.

and 0-94999 was sent to sorcha pipeline:

sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_94999_color.csv   --orbits synthetic_impactors/color_orbit_output/Synthetic_Impactors_combined_0_94999_orbit.csv   --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_94999_10yr_full_output_test --ew impactor_run_0_94999_10yr_full_output_test_complete

Submitted batch job 36901620

09-20

(base) qc59@dcc-login-01  /work/qc59 $ ./synthetic_impactors_multi_submit.sh 52000 92000 20000 1000

Submitting parallel NEO analysis jobs:

Global range:  52000 to 92000 (exclusive)

Chunk size:    20000     (per job's assigned range)

Window size:   1000    (save every N NEOs within each job)

Submitted job 36840178 for range 52000-71999 (window=1000)

Submitted job 36840179 for range 72000-91999 (window=1000)

Submitted 2 jobs total.

Monitor: squeue -u qc59

Logs:    logs/

09-18

Now:
impactor_run_0_7999_10yr_full_output_test.h5

running on dcc, for complete output with --ew command
sbatch sorcha_run.sh   -c sorcha_config_demo.ini   -p Synthetic_Impactors_combined_0_7999_color.csv   --orbits Synthetic_Impactors_combined_0_7999_orbit.csv   --pointing-db baseline_v3.4_10yrs.db   -o ./   -t impactor_run_0_7999_10yr_full_output_test2 --ew impactor_run_0_7999_10yr_full_output_test2

Submitted batch job 36589430

Deriving diameter

09-17

With only 0-999 (before combined data file):
cat logs/sorcha-36580443.err

with the combined data file, try to see if it's because the combined file is

some dangerous impactors I created: impact during the time it's very close to the sun
zz_Attachment folder/Pasted image 20250917141957.png

And there are some post detection ones - only detectable after the impact?

tryignt o

09-16

Add new code to retry every few seconds.

Check on these status: vim logs/neo_analysis_36497725_4294967294.err
          36497719 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-15

36497720 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-15

36497721 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-15

36497722 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-15

36497723 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-14

36497724 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-14

36497725 cosmology neo_anal     qc59  R       3:38      1 dcc-cosmology-14

Submitted 100 k objects lol- not workign because of JPL refused request (too frequent)

Submitting parallel NEO analysis jobs:

  Range: 2000 to 100000

  Chunk size: 1000

Submitted job 36492776 for range 2000-2999

Submitted job 36492777 for range 3000-3999

Submitted job 36492778 for range 4000-4999

Submitted job 36492779 for range 5000-5999

Submitted job 36492780 for range 6000-6999

Submitted job 36492781 for range 7000-7999

Submitted job 36492782 for range 8000-8999

Submitted job 36492783 for range 9000-9999

Submitted job 36492784 for range 10000-10999

Submitted job 36492785 for range 11000-11999

Submitted job 36492786 for range 12000-12999

Submitted job 36492787 for range 13000-13999

Submitted job 36492788 for range 14000-14999

Submitted job 36492789 for range 15000-15999

Submitted job 36492790 for range 16000-16999

Submitted job 36492791 for range 17000-17999

Submitted job 36492792 for range 18000-18999

Submitted job 36492793 for range 19000-19999

Submitted job 36492794 for range 20000-20999

Submitted job 36492795 for range 21000-21999

Submitted job 36492796 for range 22000-22999

Submitted job 36492797 for range 23000-23999

Submitted job 36492798 for range 24000-24999

Submitted job 36492799 for range 25000-25999

Submitted job 36492800 for range 26000-26999

Submitted job 36492801 for range 27000-27999

Submitted job 36492802 for range 28000-28999

Submitted job 36492803 for range 29000-29999

Submitted job 36492804 for range 30000-30999

Submitted job 36492805 for range 31000-31999

Submitted job 36492806 for range 32000-32999

Submitted job 36492807 for range 33000-33999

Submitted job 36492808 for range 34000-34999

Submitted job 36492809 for range 35000-35999

Submitted job 36492810 for range 36000-36999

Submitted job 36492811 for range 37000-37999

Submitted job 36492812 for range 38000-38999

Submitted job 36492813 for range 39000-39999

Submitted job 36492814 for range 40000-40999

Submitted job 36492815 for range 41000-41999

Submitted job 36492816 for range 42000-42999

Submitted job 36492817 for range 43000-43999

Submitted job 36492818 for range 44000-44999

Submitted job 36492819 for range 45000-45999

Submitted job 36492820 for range 46000-46999

Submitted job 36492821 for range 47000-47999

Submitted job 36492822 for range 48000-48999

Submitted job 36492823 for range 49000-49999

Submitted job 36492824 for range 50000-50999

Submitted job 36492825 for range 51000-51999

Submitted job 36492826 for range 52000-52999

Submitted job 36492827 for range 53000-53999

Submitted job 36492828 for range 54000-54999

Submitted job 36492829 for range 55000-55999

Submitted job 36492830 for range 56000-56999

Submitted job 36492831 for range 57000-57999

Submitted job 36492832 for range 58000-58999

Submitted job 36492833 for range 59000-59999

Submitted job 36492834 for range 60000-60999

Submitted job 36492835 for range 61000-61999

Submitted job 36492836 for range 62000-62999

Submitted job 36492837 for range 63000-63999

Submitted job 36492838 for range 64000-64999

Submitted job 36492839 for range 65000-65999

Submitted job 36492840 for range 66000-66999

Submitted job 36492841 for range 67000-67999

Submitted job 36492842 for range 68000-68999

Submitted job 36492843 for range 69000-69999

Submitted job 36492844 for range 70000-70999

Submitted job 36492845 for range 71000-71999

Submitted job 36492846 for range 72000-72999

Submitted job 36492847 for range 73000-73999

Submitted job 36492848 for range 74000-74999

Submitted job 36492849 for range 75000-75999

Submitted job 36492850 for range 76000-76999

Submitted job 36492851 for range 77000-77999

Submitted job 36492852 for range 78000-78999

Submitted job 36492853 for range 79000-79999

Submitted job 36492854 for range 80000-80999

Submitted job 36492855 for range 81000-81999

Submitted job 36492856 for range 82000-82999

Submitted job 36492857 for range 83000-83999

Submitted job 36492858 for range 84000-84999

Submitted job 36492859 for range 85000-85999

Submitted job 36492860 for range 86000-86999

Submitted job 36492861 for range 87000-87999

Submitted job 36492862 for range 88000-88999

Submitted job 36492863 for range 89000-89999

Submitted job 36492864 for range 90000-90999

Submitted job 36492865 for range 91000-91999

Submitted job 36492866 for range 92000-92999

Submitted job 36492867 for range 93000-93999

Submitted job 36492868 for range 94000-94999

Submitted job 36492869 for range 95000-95999

Submitted job 36492870 for range 96000-96999

Submitted job 36492871 for range 97000-97999

Submitted job 36492872 for range 98000-98999

Submitted job 36492873 for range 99000-99999

Submitted 98 jobs total

Monitor jobs with: squeue -u qc59

Check logs in: logs/

parallel code for creating impactors through all neo population

30 min for 2000 obj

synthetic_impactors_multi_submit.sh: the sh file to split the jobs, and run the sbatch synthetic_impactors_multi_work.sh command
synthetic_impactors_multi_work.sh: the sh file that sbatch works on.

To run for multiple jobs: (start, end, trunk size)
./synthetic_impactors_multi_submit.sh 0 2000 1000

It will print:

Submitting parallel NEO analysis jobs:

  Range: 0 to 2000

  Chunk size: 1000

Submitted job 36485280 for range 0-999

Submitted job 36485281 for range 1000-1999

Submitted 2 jobs total

Monitor jobs with: squeue -u qc59

Check logs in: logs/

And the log file has the name: vim logs/neo_analysis_36485280_4294967294.log

09-15

impacting
related files:
zz_Attachment folder/Pasted image 20250915165847.png

09-14

It's happening!
Found some errors and fixed them:

And did some improvements:

Now my synthetic objects are all very good (no 0.6 au issue, and all of them are around 0.03 - 0.01 AU away when approaching Earth)

Submitting to dcc to run through lsst oboservation and argus:
first one on node 15 is for argus
second one on node 04 is for lsst (full 10 year)

36291407 cosmology   sorcha     qc59  R       0:05      1 dcc-cosmology-15

36291022 cosmology   sorcha     qc59  R       5:44      1 dcc-cosmology-04

09-12

JPL time system:

09-10

JPL:
needs Ma, or Tp

zz_Attachment folder/Pasted image 20250911141249.png
how close does an asteroid turn into something hitting Earth?
Gravitational Sphere of Influence

Rebound

How often does collision happen? Does the simulation take into account for this?

09-05

sbatch --array=0-3 multi_sorcha.sh 100 32

Revised my .sh file, so that the log file/output file won’t overlap

Job id: 35386350: 9000 objects from the >9 yr detections, parellel running sbatch --array=0-3 multi_sorcha.sh 100 32

--chunksize $(($1 * $2)) \

--norbits $1 \

--cores $2 \

2 hours for 12,000
500 * 2 hours for all 6 million

1000 hours/24 =

09-04

sbatch --array=0-3 multi_sorcha.sh 100 32
if memory set to be 160, some jobs will fail.
Now assigning 260 G memory and try
6 hours for non-parallel - 1000 objects, 1 yr
submitted dcc job to run sorcha
             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON)

35332586 cosmology   sorcha     qc59  R       0:05      1 dcc-cosmology-04

35332329 cosmology   sorcha     qc59  R       5:32      1 dcc-cosmology-04

09-02

Now it returns detections!! Perfect!!

But there will also be cases where brightness can be a limitation for Argus.

We should argue this balance.

08-29

from Jake:
adam core for impact prediction
b612 adam core
GitHub - B612-Asteroid-Institute/adam_core: Astrodynamics utilities used by the Asteroid Institute
Asteroid Institute - adam_core

To generate our own drawing of asteroids:
https://www2.boulder.swri.edu/~davidn/NEOMOD_Simulator/

Jake's talk
Sednoids

U band is not good at all, y is not good too
Has this been validated

sorcha run -c sorcha_config_demo.ini -p sspp_testset_colours.txt --orbits sspp_testset_orbits.des --pointing-db baseline_v2.0_1yr.db -o ./ -t testrun_e2e --ew output_full

08-26

zz_Attachment folder/Pasted image 20250826133359.png
square degree vs steradians.

Steradians, Radians Squared, Degrees Squares as Solid Angles - YouTube

Trying to derive brightness

zz_Attachment folder/Pasted image 20250825140412.png

08-21

Many visualizations.
zz_Attachment folder/Pasted image 20250821113611.png

08-16

Can I also include discovery ra and dec in my analysis?

zz_Attachment folder/Pasted image 20250813151411.png
zz_Attachment folder/Pasted image 20250813152337.png

08-01

Sorcha simulation:

sorcha run -c sorcha_config_demo.ini -p sspp_testset_colours.txt --orbits sspp_testset_orbits.des --pointing-db baseline_v2.0_1yr.db -o ./ -t testrun_e2e --stats testrun_stats

sorcha run -c Rubin_circular_approximation.ini -p 2024YR4_colours.txt --orbits 2024YR4_orbits.des --pointing-db ../baseline_v2.0_1yr.db -o ./ -t testrun_e2e --stats testrun_stats

Missing color information

07-31

zz_Attachment folder/Pasted image 20250731132044.png

07-30

filter out ddf objects
zz_Attachment folder/Pasted image 20250730131052.png
Deep Drilling Fields — Observing Strategy

07-29

converting from Zenith/amunith and RA and Dec

zz_Attachment folder/Pasted image 20250729123108.png

DCR effect:

toward Zenith: plus offset value
Bluer star: smaller g value
zz_Attachment folder/Pasted image 20250729122520.png

07-21

Trogen does not have albedo information, thus can't derive diameter information.

07-15

"
With the object so close to Earth, the parallax of different observers on different parts of the globe allowed much greater precision than is usual
"

Fireballs

Asteroid Size (m) Time Before Impact Detection Method Notes
2008 TC3 ~4 m ~19 hours Optical telescope (Catalina Sky Survey) First ever detected before impact
2014 AA ~2-3 m ~21 hours Catalina Sky Survey Impacted over Atlantic; no meteorite recovered
2018 LA ~3 m ~8 hours Catalina Sky Survey Exploded over Botswana; meteorites recovered
2022 EB5 ~2 m ~2 hours Piszkéstető Observatory (Hungary) Impacted over the Arctic Ocean
2023 CX1 ~1 m ~7 hours Observatoire de Paris (by amateur observer) Tracked in real time to fireball over France

detection phases

Detection Phase Method Relevant Paper
Pre-impact (space) Sky surveys + MOPS + Scout Jenniskens 2009, Farnocchia 2016
Atmospheric entry All-sky cameras, satellites, infrasound Brown 2002, Devillepoix 2020, Colas 2020
Orbit + recovery Tracklets + triangulation + modeling Jenniskens, FRIPON, DFN papers (more on atmosphere entry phase)

Pre-impact phase:

Year Leading Survey
Early 2000s LINEAR
2010–2014 Catalina Sky Survey
2015–Now Pan-STARRS (now leads discoveries)
Special Role NEOWISE detects many dark NEAs

current surveys

Survey Name Location Operator Key Features
Catalina Sky Survey (CSS) Arizona, USA Univ. of Arizona / NASA Most successful in discovering NEAs, discovered 2008 TC3, 2018 LA
Pan-STARRS (1 & 2) Hawaii, USA Univ. of Hawaii / NASA Deep, wide-field imaging; largest number of NEA discoveries since ~2015
ATLAS (Asteroid Terrestrial-impact Last Alert System) Hawaii, Chile, South Africa Univ. of Hawaii / NASA Full-sky every night; designed for days-to-hours impact alerts
ZTF (Zwicky Transient Facility) California, USA Caltech Fast, wide-field transient survey; not NEA-focused but still contributes
LINEAR (Lincoln Near-Earth Asteroid Research) New Mexico, USA MIT Lincoln Lab / USAF Dominant NEA discoverer in early 2000s (now retired)
Spacewatch Arizona, USA Univ. of Arizona Pioneering NEA survey in the 1990s; still active
NEOWISE (space-based) Earth orbit NASA JPL Infrared detection; identifies dark asteroids invisible to visible-light telescopes

space based or planned

Mission Status Key Role
NEOWISE Active (reactivated WISE mission) Infrared detection of dark NEAs
NEOCam / NEO Surveyor Launch ~2027 (planned) Will detect NEAs from infrared space observatory — better for spotting sunward NEAs
Sentinel (B612 Foundation) Canceled Proposed space-based NEO detector
Hera (ESA) 2027 (planetary defense mission) Will visit Dimorphos post-DART mission for impact study, not a survey

07-11

Different phase function:

Model Phase Function Φ(α) Notes
Lambert sin⁡α+(π−α)cos⁡απ Isotropic scattering
Lommel–Seeliger Requires integrating μ0μ0+μ Better for dark bodies
H–G (1−G)Φ1(α)+GΦ2(α) Empirical model
Hapke Full integral over bidirectional reflectance Physical, complex
Linear Φ≈10−0.4βα Simple approximation

zz_Attachment folder/Pasted image 20250711103310.png

07 - 10

The distribution of magnitude change over a course of time
How is fireball asteroid detected?
Does Sorcha include the detection limit of LSST? or just simulated for all asteroids?

07-07

zz_Attachment folder/Pasted image 20250707100627.png
zz_Attachment folder/Pasted image 20250707100643.png

07-06

Study overview of asteroids
Trojans asteroids, main belt.
Laguangian points
zz_Attachment folder/Pasted image 20250706143612.png

06-24

very interesting asteroid discovery rate video
Asteroid Discovery From 1980 - 2010 - YouTube

And some interesting note by Dr Richard Miles
Asteroids & Remote Planets – British Astronomical Association

The best time to observe is within a month or two of the opposition date listed above. This is when objects are brightest. If a target object is a slow rotator, it is necessary to extend coverage by several months at least. Asteroids pass through two retrograde points: one before opposition and one after opposition, and for a week or so they move more slowly than usual when the same reference stars can be used for a week or more. This means we can obtain more accurate photometry and solve low-amplitude rotators. Finally, another sweet spot is to observe an object when its phase angle changes very little since then we do not need to know how the correction for changing phase angle affects its brightness, i.e. quite opposite to an object within a few days either side of opposition where the phase brightening can be much greater than the rotational amplitude of its lightcurve.

A usful website hub:
Table of Contents

06-23

An asnwer found here:
Questions regarding MOPS asteroid linking algorithm and whether broken links are represented in DP03 - Support - Rubin Observatory LSST Community forum

Thanks for your questions, @ewhite42.

  1. You are correct that the HelioLinC3D software package will be used for tracklet linking and orbit fitting for Rubin. There’s a description of the linking process in the DP0.3 documentation 2.
  2. The DP0.3 data set is composed of catalogs containing real and simulated solar system and interstellar objects. You can find more information in the DP0.3 Simulation documentation, including a list of known issues with the simulated data set. No cases of broken links as you describe have been reported in DP0.3.

I now have a better sense of their pipeline

This is a good slide:
The Solar System Processing (SSP) Pipeline — Rubin Observatory DP0.3
zz_Attachment folder/Pasted image 20250623154106.png

Trying their linking package:

It's a cpp package, some error when installing on macos:

If you don't need parallel processing for testing, you can simply remove the -fopenmp flag from the Makefile changed

Heliolinnk worked!!

A useful summary of how to use this package

Summary of Heliolinc2 usage

zz_Attachment folder/Pasted image 20250623184525.png

Results from the test data.

zz_Attachment folder/heliolinc_real_asteroid_tracks.png

zz_Attachment folder/Pasted image 20250623185324.png
zz_Attachment folder/heliolinc_before_after_comparison.png

06-22

Live asteroid tracking of 2024 YR4
Asteroid (NEO) 2024 YR4 | TheSkyLive

06-19

Detection limit:
m_stationary - detal_m (due to trail loss)

detal_m:
SMTN-003: Trailing Losses for Moving Objects
cneos.jpl.nasa.gov/doc/JPL_Pub_16-11_LSST_NEO.pdf

Synthetic tracking: tells about how synthetic tracking helps with the trail loss? arxiv.org/pdf/2401.03255
LSST detection strategy: faculty.washington.edu/ivezic/Publications/Jones2018.pdf

"The second effect, detection loss, occurs because

source detection software is optimized for detecting point sources;

a stellar PSF-like matched filter is used when identifying sources

that pass above the defined threshold. This filter is non-optimal

for trailed objects but losses can be mitigated with improved

software (e.g. detecting to a lower PSF-based SNR threshold and

then using a variety of trailed PSF filters to detect sources)."

When

considering whether a source would be detected at a given SNR

using typical source detection software, the sum of SNR trailing

and detection losses should be used. With an improved algorithm

optimized for trailed sources (implying additional scope for LSST

data management), the smaller SNR losses should be used instead.

06-17

Definition of magnitude
Horizon:
'APmag, S-brt,' =
The asteroids' approximate apparent airless visual magnitude and surface
brightness using the standard IAU H-G system magnitude model:

APmag = H + 5*log10(delta) + 5*log10(r) - 2.5*log10((1-G)*phi_1 + G*phi_2)

06-15

Asteroid detection algorithms

Machine Learning:

Non-sidereal tracking:
[2306.16519] Astreaks: Astrometry of NEOs with trailed background stars

06-05

zz_Attachment folder/Pasted image 20250604163952.png

06-04

The blue dots are actually coming from panstarrs: which means I'm having extended data from panstarrs that may not be neccesary

check columns of the data to find usful information
table columns:
The Pan-STARRS1 Database and Data Products - IOPscience
ObjectQualityFlags to filter out flab == 64 and flag == 128
zz_Attachment folder/Pasted image 20250604134333.png

Try to filter out good quality panstarrs query in analysze_panstarr.ipynb
New plot
zz_Attachment folder/Pasted image 20250604162526.png

Red is from argus sextractor, the dots are matched sources.

zz_Attachment folder/Pasted image 20250604162428.png

matched sources are saved under:
'matched_sources.csv'

06-03

Find out the limit of the argus array image:
source detection of the current image
zero-mag correction from pansstar

find the limit of the magnitude of argus array

some interesting video about argus array: The Argus Array (Hank Corbett) - YouTube

Using SExtractor:
config file
parameter file

A2TD uses: Atik Cameras Apx60

Key specifications from the search results:

For SExtractor configuration:

Still need to determine:

Some interesting extra setup for experiment (at the end of this config file)

#-------------------------------- Catalog ------------------------------------

CATALOG_NAME     output.cat       # name of the output catalog
CATALOG_TYPE     ASCII_HEAD       # NONE,ASCII,ASCII_HEAD, ASCII_SKYCAT,
                                  # ASCII_VOTABLE, FITS_1.0 or FITS_LDAC
PARAMETERS_NAME  default.param    # name of the file containing catalog contents

#------------------------------- Extraction ----------------------------------

DETECT_TYPE      CCD              # CCD (linear) or PHOTO (with gamma correction) - use CCD for CMOS too
DETECT_MINAREA   5                # minimum number of pixels above threshold
DETECT_THRESH    1.5              # <sigmas> or <threshold>,<ZP> in mag.arcsec-2
ANALYSIS_THRESH  1.5              # <sigmas> or <threshold>,<ZP> in mag.arcsec-2

FILTER           Y                # apply filter for detection (Y or N)?
FILTER_NAME      default.conv     # name of the file containing the filter

DEBLEND_NTHRESH  32               # Number of deblending sub-thresholds
DEBLEND_MINCONT  0.005            # Minimum contrast parameter for deblending

CLEAN            Y                # Clean spurious detections? (Y or N)?
CLEAN_PARAM      1.0              # Cleaning efficiency

MASK_TYPE        CORRECT          # type of detection MASKing: can be one of
                                  # NONE, BLANK or CORRECT

#------------------------------ Photometry -----------------------------------

PHOT_APERTURES   5,10,20          # MAG_APER aperture diameter(s) in pixels
PHOT_AUTOPARAMS  2.5, 3.5         # MAG_AUTO parameters: <Kron_fact>,<min_radius>
PHOT_PETROPARAMS 2.0, 3.5         # MAG_PETRO parameters: <Petrosian_fact>,
                                  # <min_radius>
PHOT_AUTOAPERS   0.0,0.0          # <estimation>,<measurement> minimum apertures
                                  # for MAG_AUTO and MAG_PETRO

SATUR_LEVEL      65535.0          # level (in ADUs) at which arises saturation (estimated for 16-bit)
SATUR_KEY        SATURATE         # keyword for saturation level (in ADUs)

MAG_ZEROPOINT    0.0              # magnitude zero-point (will be calculated from data)
MAG_GAMMA        4.0              # gamma of emulsion (for photographic scans)
GAIN             1.0              # detector gain in e-/ADU (needs calibration data)
GAIN_KEY         GAIN             # keyword for detector gain in e-/ADU
PIXEL_SCALE      0                # size of pixel in arcsec (0=use FITS WCS info)

#------------------------- Star/Galaxy Separation ----------------------------

SEEING_FWHM      1.2              # stellar FWHM in arcsec
STARNNW_NAME     default.nnw      # Neural-Network_Weight table filename

#------------------------------ Background -----------------------------------

BACK_TYPE        AUTO             # AUTO or MANUAL
BACK_VALUE       0.0              # Default background value in MANUAL mode
BACK_SIZE        64               # Background mesh: <size> or <width>,<height>
BACK_FILTERSIZE  3                # Background filter: <size> or <width>,<height>

BACKPHOTO_TYPE   GLOBAL           # can be GLOBAL or LOCAL
BACKPHOTO_THICK  24               # thickness of the background LOCAL annulus
BACK_FILTTHRESH  0.0              # Threshold above which the background-
                                  # map filter operates

#------------------------------ Check Image ----------------------------------

CHECKIMAGE_TYPE  NONE             # can be NONE, BACKGROUND, BACKGROUND_RMS,
                                  # MINIBACKGROUND, MINIBACK_RMS, -BACKGROUND,
                                  # FILTERED, OBJECTS, -OBJECTS, SEGMENTATION,
                                  # or APERTURES
CHECKIMAGE_NAME  check.fits       # Filename for the check-image

#--------------------- Memory (change with caution!) -------------------------

MEMORY_OBJSTACK  3000             # number of objects in stack
MEMORY_PIXSTACK  300000           # number of pixels in stack
MEMORY_BUFSIZE   1024             # number of lines in buffer

#------------------------------- ASSOCiation ---------------------------------

ASSOC_NAME       sky.list         # name of the ASCII file to ASSOCiate
ASSOC_DATA       2,3,4            # columns of the data to replicate (0=all)
ASSOC_PARAMS     2,3,4            # columns of xpos,ypos[,mag]
ASSOC_RADIUS     2.0              # cross-matching radius (pixels)
ASSOC_TYPE       NEAREST          # ASSOCiation method: FIRST, NEAREST, MEAN,
                                  # MAG_MEAN, SUM, MAG_SUM, MIN or MAX
ASSOCSELEC_TYPE  MATCHED          # ASSOC selection type: ALL, MATCHED or -MATCHED

#----------------------------- Miscellaneous ---------------------------------

VERBOSE_TYPE     NORMAL           # can be QUIET, NORMAL or FULL
HEADER_SUFFIX    .head            # Filename extension for additional headers
WRITE_XML        N                # Write XML file (Y/N)?
XML_NAME         sex.xml          # Filename for XML output
XSL_URL          file:///usr/local/share/sextractor/sextractor.xsl
                                  # Filename for XSL style-sheet
NTHREADS         1                # 1 single thread

FITS_UNSIGNED    N                # Treat FITS integer values as unsigned (Y/N)?
INTERP_MAXXLAG   16               # Max. lag along X for 2nd-order interpolation
INTERP_MAXYLAG   16               # Max. lag along Y for 2nd-order interpolation
INTERP_TYPE      ALL              # Interpolation type: NONE, VAR_ONLY or ALL

#--------------------------- Experimental Stuff -----------------------------

PSF_NAME         default.psf      # File containing the PSF model
PSF_NMAX         1                # Max.number of PSFs fitted simultaneously
PATTERN_TYPE     RINGS-HARMONIC   # can RINGS-QUADPOLE, RINGS-OCTOPOLE,
                                  # RINGS-HARMONIC
SOM_NAME         default.som      # File containing Self-Organizing Map weights

zz_Attachment folder/Pasted image 20250603170406.png
zz_Attachment folder/fits_zoom.png

06-01

Calculating the theoretical length of the streak:

The START and END time does not match the ExpTime:

UTCSTART= '2025-05-22T08:48:50.608997'                                          
UTCEND  = '2025-05-22T08:49:55.176073'                                          
STREAMIX=                    0                                                  
RATCHNUM= '20250522_084537'                                                     
IMGTYPE = 'sci     '                                                            
TARGET  = '2003_HB '                                                            
TARGRA  =   19.557599999999997                                                  
TARGDEC =    75.39122222222223                                                  
EXPTIME =                   60

12.924517329611536, pixels.

05-29

image tools to check the brightness of a specific position:
pan-starrs image query
PanSTARRS Image Access

sdss navigator dr17
SDSS DR16 Navigate Tool

Background subtraction and source detection
zz_Attachment folder/Pasted image 20250529134339.png

trying to see if there are some visible streaks

zz_Attachment folder/Pasted image 20250529144932.png

Adding background subtraciton makes the whole process slower.

First trial of source detection:
zz_Attachment folder/Pasted image 20250529134645.png

Wrote a function of

05-28

pixel scale of the images:
{'pc_matrix_x': np.float64(1.433063198455264),
'pc_matrix_y': np.float64(1.433063198455264),
'pc_matrix_mean': np.float64(1.433063198455264)}
1.43 arcsec/pixel

calculated by

if 'PC1_1' in img_header and 'CDELT1' in img_header:
    pc1_1 = img_header['PC1_1']
    pc1_2 = img_header.get('PC1_2', 0)
    pc2_1 = img_header.get('PC2_1', 0)
    pc2_2 = img_header['PC2_2']
    
    cdelt1 = abs(img_header['CDELT1'])
    cdelt2 = abs(img_header['CDELT2'])
    
    # Calculate pixel scales
    pixel_scale_x = cdelt1 * np.sqrt(pc1_1**2 + pc2_1**2) * 3600
    pixel_scale_y = cdelt2 * np.sqrt(pc1_2**2 + pc2_2**2) * 3600
    
    results['pc_matrix_x'] = pixel_scale_x
    results['pc_matrix_y'] = pixel_scale_y
    results['pc_matrix_mean'] = (pixel_scale_x + pixel_scale_y) / 2

05-26

Target RA is in hours?
In the FITS header:

But the WCS system expects both RA and Dec to be in degrees. The actual image center from the WCS is:

05-18

Some resources:

Projects

Software pipeline
The sky at one terabit per second: architecture and implementation of the Argus Array Hierarchical Data Processing System